VTX Geant3 volume reorganization and placement

(1) In the context of alignment issues, I had a look at the organization o fthe VTX Geant3 volumes. Suppose you want to move a stripixel ladder by a small amount. In the software, a layer 3, 4 ladder consists of 6 elements which are independently placed in master volume SICG (Silicon Cage). You have to move (rotate and translate) each of these 6 volumes such that they stay together and not bump into each other.

So I grouped the elements that make up a ladder together into a holder volume, so that you can move this single volume around.

(2) Left: Before, 6 volumes [SI03, SP03, SIR4(2), SIR5(2)], some containing other elements, were placed separately into the master volume SICG.

Right: In the new organization, all elements making up the layer 3 and 4 ladders are placed in a single holder volume, SJ03, SJ04 for layers 3 and 4, respectively.

GEANT> dcut sien 3 .1 -7 -45 5 5

(3) The new organization also makes it possible to display ladders with all elements visible. Here is a stipixel ladder from layer 4:

GEANT> satt * seen 1
GEANT> satt sj04 seen 0
GEANT> satt sp04 seen 0
GEANT> next; draw sj04 80 140 0 40  3 2.0 2.0
GEANT>       draw sj04 90  90 0 10 16 0.5 0.5
(4) Now you can easily pick up one (layer 3,4) ladder and shift it.
(5) Next, the pixels, layer 1 and 2 ladders. The layer 1, 2 ladders consist of 6 independently placed volumes (SIO1 or 2, SIOP(2), SIOM(3) and SICT).

Group these together into SJ01 (for barrel 1) or SJ02 (for barrel2).

(6) Next make 2 holder volumes for VTX East and West. The laders are now placed in SVXE,W.
(7) Now the cage SICG contains the N and S FVTX SCMN and SCMS, which in turn hold the 4 FVTX cages SCM1-4.

On the bottom, SVXE and SVXW are the barrel halves, each containing ladders SJ0x for barrels 1-4.

(The volumes in the middle, SKCC-SISP, are hoses, cables, manifolds, frames etc.)

Here is the old organization, where many ladder elements were placed directly into SICG. Almost impossible to read.

(8) After some renaming, the paths to the 'sensitive volumes' in calls to GSDET and GSDETH are as shown
         vtx/fvtx    vtx        ladder          sensitive
 hall   enclosures  east/west   holder   stave  silicon
---------------------------------------------------------
 HALL   SIEN  SICG    SVXW      SJ01  1  SI01     SISN   
 HALL   SIEN  SICG    SVXE      SJ01  6  SI01     SISN   
 HALL   SIEN  SICG    SVXW      SJ02  1  SI02     SISN   
 HALL   SIEN  SICG    SVXE      SJ02 11  SI02     SISN   
 HALL   SIEN  SICG    SVXW      SJ03  1  SI03     SISN   
 HALL   SIEN  SICG    SVXE      SJ03  9  SI03     SISN   
 HALL   SIEN  SICG    SVXW      SJ04  1  SI04     SISN   
 HALL   SIEN  SICG    SVXE      SJ04 13  SI04     SISN   
(9) See if the thing still works: You can see hits on the sensitive silicon SISN.

Single particle file cfmgmc.input

   5  5 90 1 30 10 0. 0. 0.   0
Picture:
  GEANT> satt * seen 0
  GEANT> satt sisn seen 1
  GEANT> cfm_sngp
  GEANT> ptrig 1
  GEANT> draw sicg 0 90 0 1 10 1 1
  GEANT> dxyz
  GEANT> dhits
  GEANT> daxis 0 0 0 1
(10) Check on the ladder placement: After Pisa puts together the VTX, it writes out a file svxPISA.par, which containes (among other things) the x,y,z position, and the rotation matrix for each of the silicon sensors. I check these against the final engineering drawing. The crucial values are circled. R25.5 is the distance in mm to the front face of the sensor. With the 13° tilt, this means the center of the silicon should be at 26.3 mm.

By reading svxPISA.par, you can make the table below:

           ladder          center            tilt
           radius          angle             angle
barrel,  -----------     ------------     -----------
ladder   old     new     old      new     old     new
 ------------------------------------------------------
 1  1   2.630   2.630  -53.400  -53.400  13.072  13.000
 1  2   2.630   2.630  -26.700  -26.700  13.072  13.000
 1  3   2.630   2.630    0.000    0.000  13.072  13.000
 1  4   2.630   2.630   26.700   26.700  13.072  13.000
 1  5   2.630   2.630   53.400   53.400  13.072  13.000
 1  6   2.630   2.630  126.600  126.600  13.072  13.000
 1  7   2.630   2.630  153.300  153.300  13.072  13.000
 1  8   2.630   2.630 -180.000  180.000  13.072  13.000
 1  9   2.630   2.630 -153.300 -153.300  13.072  13.000
 1 10   2.630   2.630 -126.600 -126.600  13.072  13.000
-------------------------------------------------------
(output from compare1.f, which reads svxPISA.par)
This verifies that the barrel 1 ladders are placed correctly in the new organization. Note the tilt angle used to be off by a little.
(11) Check on the ladder placement, barrel2. R50.4 is the distance in mm to the front face of the sensor. With the 13° tilt, this means the center of the silicon should be at 51.2 mm.

By reading svxPISA.par, you can make the table below:

  barrel ladder sensor  R       angle      tilt
  ----------------------------------------------
    2      1      1   5.1300   -61.2000  13.0203  <- not 13.0000
    2      2      1   5.1300   -47.6000  13.0198
    2      3      1   5.1300   -34.0000  13.0202
    2      4      1   5.1300   -20.4000  13.0201
    2      5      1   5.1300    -6.7999  13.0202  <- not 5.12 cm
    2      6      1   5.1300     6.7999  13.0203
    2      7      1   5.1300    20.3999  13.0200
    2      8      1   5.1300    34.0000  13.0199
    2      9      1   5.1300    47.6000  13.0194
    2     10      1   5.1300    61.2000  13.0195  <- not 61.5000

    2     11      1   5.1300   118.8001  13.0195
    2     12      1   5.1300   132.4000  13.0206
    2     13      1   5.1300   146.0000  13.0199
    2     14      1   5.1300   159.6000  13.0199
    2     15      1   5.1300   173.2001  13.0203
    2     16      1   5.1300  -173.2001  13.0199
    2     17      1   5.1300  -159.6001  13.0197
    2     18      1   5.1300  -146.0000  13.0199
    2     19      1   5.1300  -132.4000  13.0195
    2     20      1   5.1300  -118.8001  13.0200
------------------------------------------------
Note the discrepancies. What is going on?

(12) So Walt and I went to the VTX 3D model and measured the distance from the origin to the center of the silicon sensor (51.926 mm), and the angle of the sensor w.r.t. the radius to the silicon center (77.02°). This means the tilt angle is 12.98°, not 13.02°. The radius of the circle tangent to the silicon surface is now 50.55 mm (was 50.4). The ladder-to-ladder angle was measured to be 13.626°

Entering these values in phnx.par, we now get:

           ladder          center            tilt
           radius          angle             angle
barrel,  -----------     ------------     -----------
ladder   old     new     old      new     old     new
-------------------------------------------------------
 2  1   5.130   5.193  -61.200  -61.317  13.057  12.980
 2  2   5.130   5.193  -47.600  -47.691  13.057  12.980
 2  3   5.130   5.193  -34.000  -34.065  13.057  12.980
 2  4   5.130   5.193  -20.400  -20.439  13.057  12.980
 2  5   5.130   5.193   -6.800   -6.813  13.057  12.980
 2  6   5.130   5.193    6.800    6.813  13.057  12.980
 2  7   5.130   5.193   20.400   20.439  13.057  12.980
 2  8   5.130   5.193   34.000   34.065  13.057  12.980
 2  9   5.130   5.193   47.600   47.691  13.057  12.980
 2 10   5.130   5.193   61.200   61.317  13.057  12.981
 2 11   5.130   5.193  118.800  118.683  13.057  12.981
 2 12   5.130   5.193  132.400  132.309  13.057  12.980
 2 13   5.130   5.193  146.000  145.935  13.057  12.980
 2 14   5.130   5.193  159.600  159.561  13.057  12.980
 2 15   5.130   5.193  173.200  173.187  13.057  12.980
 2 16   5.130   5.193 -173.200 -173.187  13.057  12.980
 2 17   5.130   5.193 -159.600 -159.561  13.057  12.980
 2 18   5.130   5.193 -146.000 -145.935  13.057  12.980
 2 19   5.130   5.193 -132.400 -132.309  13.057  12.980
 2 20   5.130   5.193 -118.800 -118.683  13.057  12.980
-------------------------------------------------------
(output from compare1.f, which reads svxPISA.par)
Note the Barrel2 ladders have moved in r, phi and tilt.
(13) Layer 3:

            ladder          center            tilt      
            radius          angle             angle     
 barrel,  -----------     ------------     -----------  
 ladder   old     new     old      new     old     new  
 -------------------------------------------------------
  3  1  11.765  11.765  -61.410  -61.410  0.000   0.000
  3  2  10.360  10.387  -43.370  -43.370  0.000   0.000
  3  3  12.848  13.143  -26.210  -26.210  0.000   0.000
  3  4  11.765  11.765  -10.150  -10.150  0.000   0.000
  3  5  10.360  10.387    7.890    7.890  0.000   0.000
  3  6  12.848  13.143   25.050   25.050  0.000   0.000
  3  7  11.765  11.765   41.110   41.110  0.000   0.000
  3  8  10.360  10.387   59.150   59.150  0.000   0.000
  3  9  10.360  10.387  120.850  120.850  0.000   0.000
  3 10  11.765  11.765  138.890  138.890  0.000   0.000
  3 11  12.848  13.143  154.950  154.950  0.000   0.000
  3 12  10.360  10.387  172.110  172.110  0.000   0.000
  3 13  11.765  11.765 -169.850 -169.850  0.000   0.000
  3 14  12.848  13.143 -153.790 -153.790  0.000   0.000
  3 15  10.360  10.387 -136.630 -136.630  0.000   0.000
  3 16  11.765  11.765 -118.590 -118.590  0.000   0.000
 -------------------------------------------------------
After code fixes, the radii have changed by 0.27, 0, 2.95 mm for inner, middle, outer ladders, and match the as-built drawings.

From compare3.f



Silicon thickness (from phnx.par) 0.625 mm.
Raw numbers from the as-built 3-D model, distances from the front face
of the silicon to (0,0,0):

            Front surface   Si volume center
     ---------------------------------------
     inner   103.56 mm        103.87 mm
     middle  117.34 mm        117.65 mm
     outer   131.13 mm        131.44 mm
     ---------------------------------------
(14) Layer 4:
            ladder          center            tilt      
            radius          angle             angle     
 barrel,  -----------     ------------     -----------  
 ladder   old     new     old      new     old     new  
 -------------------------------------------------------
  4  1  15.473  15.546  -65.130  -65.130  0.000   0.001
  4  2  16.687  16.687  -52.690  -52.690  0.000   0.000
  4  3  17.901  17.828  -41.120  -41.120  0.000   0.000
  4  4  15.473  15.546  -29.080  -29.080  0.000   0.000
  4  5  16.687  16.687  -16.640  -16.640  0.000   0.000
  4  6  17.901  17.828   -5.070   -5.070  0.000   0.000
  4  7  15.473  15.546    6.970    6.970  0.000   0.000
  4  8  16.687  16.687   19.410   19.410  0.000   0.000
  4  9  17.901  17.828   30.980   30.980  0.000   0.000
  4 10  15.473  15.546   43.020   43.020  0.000   0.000
  4 11  16.687  16.687   55.460   55.460  0.000   0.000
  4 12  17.901  17.828   67.030   67.030  0.000   0.000
  4 13  17.901  17.828  112.970  112.970  0.000   0.000
  4 14  16.687  16.687  124.540  124.540  0.000   0.000
  4 15  15.473  15.546  136.980  136.980  0.000   0.000
  4 16  17.901  17.828  149.020  149.020  0.000   0.000
  4 17  16.687  16.687  160.590  160.590  0.000   0.000
  4 18  15.473  15.546  173.030  173.030  0.000   0.000
  4 19  17.901  17.828 -174.930 -174.930  0.000   0.000
  4 20  16.687  16.687 -163.360 -163.360  0.000   0.000
  4 21  15.473  15.546 -150.920 -150.920  0.000   0.000
  4 22  17.901  17.828 -138.880 -138.880  0.000   0.000
  4 23  16.687  16.687 -127.310 -127.310  0.000   0.000
  4 24  15.473  15.546 -114.870 -114.870  0.000  -0.001
 -------------------------------------------------------
After code fixes, the radii have changed by 0.73, 0, 0.73 mm for inner, middle, outer ladders, and match the as-built drawings.

From compare3.f



Silicon thickness (from phnx.par) 0.625 mm.
Raw numbers from the as-built 3-D model, distances from the front face
of the silicon to (0,0,0):

            Front surface   Si volume center
     ---------------------------------------
     inner   155.143 mm        155.455 mm
     middle  166.555 mm        166.868 mm
     outer           mm                mm
     ---------------------------------------

(15) Summary:
  • The VTX Geant3 volume tree was reorganized such that
    • All components that make up a ladder are placed together in a holder volume (one per ladder)
    • West VTX ladders are placed in SVXW, east in SVXE, and these two are places in the (F)VTX cage.
  • The VTX Pisa code can read a SQL database record containing small displacements for each ladder, and for each of the VTX halves.
  • The placement of the ladders was checked against the as-built engineering drawings, and the code was corrected to match this geometry, resulting in shifts and rotations wrt the previous version of the code.

(16) How to interface with the alignment system?
  • PISA produces an output file svxPISA.par, which contains a description of the position and orientation of each SVX sensor chip (x,y,z and rotation matrix).
  • svxPISA.par is read in by the offline code to establish the VTX geometry.
  • The alignment software operates on this geometry, and produces a new svxPISA.par.
Now what is needed is a way to read this new file into PISA, so that simulations can be run that match the data. This file cannot be used directly to construct the VTX. However, by comparing svxPISA.par from an unmodified PISA run with the version produced by the alignment software, you can easily find the delta-x,y,z between the two files. These deltas can then be used by PISA to position the ladders. So if you give PISA these two files, it can produce the modified geometry. The procedure is:
  • Run PISA unmodified to make a 'clean' svxPISA.par (just start/stop, no need to generate any events)
  • Run PISA again, this time giving it both the 'clean' and the modified versions of svxPISA.par.

Also see: Fix the offline software to recognize the new hierarchy.


Hubert Van Hecke
Last modified: Fri Jun 17 16:55:30 MDT 2016