

Neutrino Oscillation Physics with a Stopped Pion/Muon Source

R.G. Van de Water, P-25 P-25 Seminar Jan 19, 2005

Outline

- Beyond the Standard Model with SBL oscillations.
- New high intensity stopped pion/muon sources.
- High precision tests of LSND, CPT, and active-sterile oscillations.
- → Conclusions.

Beyond the Standard Model

- If MiniBooNE confirms LSND signal, strong indications of new physics, but what type?
 - Light medium mass right handed (sterile) neutrino, can explain LSND anomaly, solar neutrino spectrum+Homestake anomaly, supernova R-process, pulsar kicks, dark matter, dark energy....
 - → 3+n sterile neutrino models (hep-ph 0305255):
 - n=1, SBL fit: $\delta m^2 \sim 0.9 \text{ eV}^2$, $\sin^2(2\theta) \sim 0.16$, $\chi^2/\text{DOF}= 0.98$
 - n=2, SBL fit: $\delta m^2 \sim 0.9 \text{ eV}^2$ and $\sim 22 \text{ eV}^2$, $\chi^2/\text{DOF}= 0.94$

3+2 Model Fits

3+2 Model Inputs

Beyond the Standard Model

→ If MiniBooNE confirms LSND signal, strong indications of new physics, but what type?

- → Mass varying v, mass depends on medium (hep-ph 0401099).
- → Lorentz violation, mass depends on direction (hep-ph 0406255).
- Need new high intensity short baseline neutrino experiments!

Short Baseline Tests of New Physics

- Sterile neutrinos:
 - Measure neutral current rates with two detectors.
- CPT violation:
 - Run in antineutrino mode, compare $P(v_{\mu} \rightarrow v_{e})$ to $P(v_{\mu} \rightarrow v_{e})$.
- Mass Varying neutrinos:
 - Oscillation probability depends on absence/presence of matter.
 Build tunnel to detector to be filled with water/air.
- Lorentz Violation:
 - Oscillation probability depends on direction, look for sidereal effects.

New Short Baseline Experiments and Sources

- BooNE is a planned second detector for MiniBooNE to improve measurement of mixing parameters and run in antineutrino mode.
- → Two detector setup at a stopped pion/muon source similar to LAMPF:
 - → SNS at ORNL, will be online in 2008 (1.3 GeV, 1.4 MW, 695nsec).
 - → FNAL proton driver, 8GeV, 2MW, short beam spill.
- Advantages of a stopped pion neutrino source:
 - Low intrinsic background to a \bar{v}_{a} appearance oscillations.
 - Well determined flux and energy spectrum.
 - → Well known neutrino cross sections on Carbon.

Stopped Pion/Muon Neutrino Source

Neutrino Production from a Stopped Pion/Muon Source: nucl-ex/0309014

 2.9×10^{22}

 7.3×10^{22}

 4.4×10^{22}

FNAL ~2.5 x SNS

R.G. Van de Water

DAR $\nu(\nu/yr)$

Stopped Pion/Muon Neutrino Source

→ Neutrino Flux from a Stopped Pion/Muon Source:

$\pi^+ \rightarrow \mu^+ \nu_{\mu},$	$\tau=26nsec$	event types	$0 \rightarrow 0.695 \mu {\rm sec}$	$0.695 \rightarrow 5 \mu { m sec}$	$> 5\mu sec$
		π^+ DAR and π^\pm DIF events	96.3%	3.7%	0
$\mu^+ \to e^+ \bar{\nu}_\mu \nu_e,$	$\tau = 2.2 \mu sec.$	μ^+ DAR and oscillation candidates	14.3%	73.6%	12.1%

Los Alamos

0

MiniBooNE detector

- Pure mineral oil (Cherenkov:Scint ~ 3:1) Total volume: 800 tons (6 m radius) Fiducial volume: 445 tons (5m radius)
- Phototube support structure provides opaque barrier between veto and main volumes.
- 1280 20-cm PMTs in detector at 5.5 m radius 10% photocathode coverage
 (330 new tubes, the rest from LSND) 240 PMTs in veto.
- 99% electronics channels working. Detector livetime over 99% for beam.

Neutrino Reactions from a Stopped Pion/Muon Source

250 ton mineral oil detector 60m from SNS source.

	Neutrino	ν Source	Total Events	
Process	Source	Life Time	per Beam Year	
$ u_{\mu} e$	π^+ DAR	26ns	$69 \ \varepsilon_{ m rec}$	
$\overline{ u}_{\mu}$ e	μ^+ DAR	2197 ns	99 $\varepsilon_{ m rec}$	
$\nu_e e$	μ^+ DAR	2197ns	$630 \ \varepsilon_{ m rec}$	
Total $\nu \ e$ events T_e	$> 20 {\rm MeV}$		798 $\varepsilon_{ m rec}$	
${}^{12}{ m C}(u_e,e^-){}^{12}{ m N}_{ m gs}$	μ^+ DAR	2197ns	4689 $\varepsilon_{\rm rec}$	
${}^{12}C(\nu_e,e^-){}^{12}N^*$	μ^+ DAR	2197 ns	2147 $\varepsilon_{\rm rec}$	
${}^{13}\mathrm{C}(\nu_e,e^-)X$	μ^+ DAR	2197ns	$308 \ \varepsilon_{ m rec}$	
Total ν_e C events 7	$T_e > 20 { m MeV}$		7144 $\varepsilon_{ m rec}$	
${}^{12}\mathrm{C}(u_{\mu}, u_{\mu}){}^{12}\mathrm{C}^{*}_{15.11}$	π^+ DAR	26ns	1851 $\varepsilon_{\rm rec}$	
${}^{12}\mathrm{C}(\overline{\nu}_{\mu},\overline{\nu}_{\mu}){}^{12}\mathrm{C}^{*}_{15.11}$	μ^+ DAR	2197 ns	3752 $\varepsilon_{ m rec}$	
${}^{12}\mathrm{C}(u_e, u_e){}^{12}\mathrm{C}^*_{15.11}$	μ^+ DAR	2197ns	$3093 \ \varepsilon_{rec}$	
Total $\nu_e \subset NC$ events	6		8696 $\varepsilon_{\rm rec}$	
$^{12}\mathrm{C}(\nu_{\mu},\mu^{-})X$	π^+ DIF	26ns	$\leq 278 \ \varepsilon_{\rm rec}$	
$^{12}\mathrm{C}(\overline{\nu}_{\mu},\mu^{+})X$	π^- DIF	26ns	$\leq 82 \ \varepsilon_{\rm rec}$	
$p(\overline{\nu}_{\mu}, \mu^+)n$	π^- DIF	26ns	$272 \ \varepsilon_{ m rec}$	

Test of LSND Stopped Muon $v_{\mu} \rightarrow \bar{v}_{e}$ Oscillations (nucl-ex/0309014)

- Single 250 ton mineral oil detector (ELVIS) at 60m from SNS source. →
- Oscillation \overline{v}_{a} detected via \overline{v}_{a} p -> n e⁺, then np -> d γ (2.2MeV). →
- Backgrounds/yr: 81 intrinsic \bar{v}_{a} , ~9 DIF+cosmics. →

LSND All Data

Los Alamos

Test of LSND Stopped Muon $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Oscillations (nucl-ex/0309014)

Spectrum Shape Analysis

Improved Sensitivity

Measurement of Stopped Pion $v_{\mu} \rightarrow v_{e}$ Oscillations (nucl-ex/0309014)

- Single 250 ton mineral oil detector (ELVIS) at 60m from SNS source.
- Oscillation v_{e} detected via v_{e}^{12} C -> $e^{-12}N_{as}$, then ~8 MeV beta (11msec).
- Monoenergetic electron bump at 13 MeV (7% E resolution) on large background from stopped muon DAR v.
- Test CPT by comparing with $\bar{v}_{\mu} \rightarrow \bar{v}_{p}$ measurement on previous slide.

Active-Sterile Neutrino Oscillations with Stopped Pions

- → If LSND oscillations is $v_{\mu} \rightarrow v_{s} \rightarrow v_{e}$, then we expect P($v_{\mu} \rightarrow v_{s}$) > 0.10
- Can detect all neutrinos via NC reaction, $v_x^{12}C \rightarrow v_x^{12}C^*(15.11 \text{ MeV})$.
- Since we have monoenergetic v_{μ} source , then look for NC rate distortion as a function of L.

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^2(2\theta) \sin^2(\frac{1.27}{30}\delta m^2 L)$$

Sterile Neutrino Oscillations with $v_{\mu}^{12}C \rightarrow v_{\nu}^{12}C^*(15.11 \text{MeV})$

SNS source L=50 cm

Detector	Source Dist. (m)	FD Size (tons)	FD Length (m)	$\nu_x \ ^{12}C \rightarrow \nu_x \ ^{12}C^*$ events/year
SNS Near	18	25	3	2056
SNS Far	60	500	10	3702
FNAL Near	10	116	5	77100
FNAL Far	100	1300	12	8663

Sterile Neutrino Oscillations with $v_{\mu}^{12}C \rightarrow v_{\nu}^{12}C^{*}(15.11 \text{ MeV})$

• KARMEN measures σ = (3.2±0.6) ×10⁻⁴² cm²

KARMEN gamma $\sigma(E) \sim 2\%$

At SNS design for $\sigma(E) \sim 4$ to 7%

• Expected Backgrounds:

→NC $\bar{\nu}_{\mu}$ and CC ν_{e} , measured from beam off, ~45% stat.

• L Reconstruction:

→25 cm source size, 60 cm gamma compton scattering.

Sterile Neutrino Oscillations Sensitivity with SNS Source and Two Detectors (3 years)

(3+2) Sterile Neutrino Oscillations Measurement with SNS Source and Two Detectors (3 years)

Sterile Neutrino Oscillations Sensitivity with FNAL 8GeV PD and Two Detectors (3 years)

Cross Section Measurements at SNS

- SNS proposal in the works to measure neutrino nucleus cross sections on Pb, Fe, AI, C, O, D₂O. Strong endorsement from the Aspen APS neutrino meeting.
- Neutrino energies in the supernova type II core collapse region. This is important to studying the astrophysics of supernova, and for supernova neutrino detectors.

Sterile Neutrino Oscillations Sensitivity with SNS Source and One Near Detector (3 years), 5% flux+xsec systematic error.

Conclusions

- There are many interesting, novel, and bizarre models of neutrino oscillations beyond the standard model.
- Many of these models can be tested with a new high intensity stopped pion/muon source like the SNS.
 - → 2014 upgrade to two sources and 3MW!
- We are submitting a LDRD-ER this year to study xsection and neutrino oscillations measurements at the SNS. Submitted preprint hep-ph/0501013.
- Study feasibility of doing full scale VLADD with SNS oscillation far detector.

