Speaker: Dr. Omar Hurricane

Lawrence Livermore National Laboratory

 

"Overview of Progress and Future Prospects in Indirect Drive Implosions on the National Ignition Facility"

 

Alpha-particle self-heating, the process of deuterium-tritium (DT) fusion reaction products depositing their kinetic energy locally within the fusion reaction region and thus increasing the temperature in the reacting region with a concomitant exponential increase in the fusion reaction-rate, is the essential process needed for a fusion plasma to ‘ignite.’ For the first time

in the laboratory, significant alpha-heating in a fusion plasma was inferred in experiments and fusion ‘fuel gain’ was demonstrated on the U.S. National Ignition Facility (NIF).  Experiments on the NIF have achieved the highest yet recorded stagnation pressures (~230 Gigabar) of any facility based inertial confinement fusion (ICF) experiments, albeit they are still short of the pressures required for ignition on the NIF (i.e. 300-400 Gbar), and have exhibited some undesirable properties that need to be addressed to make more progress.  We review the issues that have been uncovered and discuss the program strategy and plan that we are following to systematically address the known issues as we press on.