Beta decays and non-standard interactions in the LHC era

Vincenzo Cirigliano
Theoretical Division, Los Alamos National Laboratory
Unsolved puzzles about our Universe point to the existence of new degrees of freedom and interactions beyond the SM.

Two traditional paths to probe this new physics:

- **High Energy**
 (direct access to new d.o.f)

- **Low Energy, High Precision**
 (indirect access to new d.o.f through virtual effects)

In this talk, take a fresh look at both LE and HE probes of non-standard charged current interactions.
CC interactions and BSM physics

• In the SM, W exchange ⇒ only V-A structure, universality relations

\[G_F \sim g^2 V_{ij} / M_w^2 \sim 1/v^2 \]
CC interactions and BSM physics

- In the SM, W exchange \Rightarrow only V-A structure, universality relations

\[G_F \sim \frac{g^2 V_{ij}}{M_w^2} \sim \frac{1}{v^2} \]

- BSM: sensitive to tree-level and loop corrections from large class of models \Rightarrow “broad band” probe of new physics

\[\frac{1}{\Lambda^2} \]
Traditionally, the field is dominated by precision β decay probes, with a rich experimental program worldwide.

Current/planned measurements will reach a 0.1%-level,
- tight constraints on BSM contributions interfering with the SM amplitude
- Yet, incoherent BSM contributions (e.g., R-handed neutrino) could be as large as 5 to 10% of the V and A interactions

Severijns, Beck, Naviliat-Cuncic, 2006
• Traditionally, field dominated by precision β decay probes, with rich experimental program worldwide

Here consider multi-scale analysis, with probes ranging from low energy (nuclei, neutron, and pion) to the LHC

\[\downarrow\]

Get improved constraints on nonstandard CC interactions

Assess future prospects

• Yet, incoherent BSM contributions (e.g. R-handed neutrino) could be as large as 5 to 10\% of the V and A interactions

Severijns, Beck, Naviliat-Cuncic, 2006
Outline

• Framework: CC interactions from the TeV scale to hadronic scales

• Low-energy probes: status, prospects

• High-energy probes (LHC): contact interactions and beyond

VC, M. Gonzalez-Alonso, M. Graesser, in progress
VC, M. Graesser, E. Passemard, in progress
Framework
Theoretical Framework

• In absence of an emerging “New Standard Model”, work within an EFT framework: most general approach
 • Assume separation of scales $M_{BSM} \gg M_W$
 • New heavy BSM particles are “integrated out”, and affect the dynamics through local operators of dim > 4
 • If $M_{BSM} \gg \text{TeV}$, one can use this framework to analyze LHC data. Will discuss relaxing this assumption at the end of the talk

• Any model calculation can be cast in the EFT language
Theoretical Framework

Λ (~TeV)

E

BSM dynamics involving new particles with m > Λ

LHC

Λ (~TeV)

M_{W,Z}

SLC, LEP

LANSCE, SNS, ...

Λ_H (~GeV)
Theoretical Framework

- BSM dynamics involving new particles with $m > \Lambda$

- \mathcal{L}_{BSM}

- $\mathcal{L}_{\text{SM}} + \sum_{d \geq 5} \frac{c_n^{(d)}}{\Lambda^{d-4}} O_n^{(d)}$

- 7+5** SU(2)xU(1)-invariant dim 6 operators contribute to beta decays (4+4 four-fermion & 3+1 vertex correction)

- ** If one includes ν_R in the low-energy theory
Theoretical Framework

- Below weak scale, $5+5^{**}$ four-fermion (quark + lepton) operators

\[\mathcal{L}_\text{BSM} \]

\[\mathcal{L}_\text{SM} + \sum_{d \geq 5} \frac{c_n^{(d)}}{\Lambda^{d-4}} O_n^{(d)} \]

\[\mathcal{L}_\text{Fermi} + \sum_{i} \frac{c_i}{\Lambda^2} O_i + \mathcal{L}_{QCD} + \mathcal{L}_{QED} \]
Theoretical Framework

\[\Lambda \sim \text{TeV} \]

\[E \]

LHC

\[\Lambda \sim \text{GeV} \]

\[H = \pi, n, p \]

BSM dynamics involving new particles with \(m > \Lambda \)

\[\mathcal{L}_{BSM} \]

\[\mathcal{L}_{SM} + \sum_{d \geq 5} \frac{c_n^{(d)}}{\Lambda^{d-4}} O_n^{(d)} \]

\[\mathcal{L}_{Fermi} + \sum_{i} \frac{c_i}{\Lambda_i^2} O_i \]

\[\mathcal{L}_{QCD} + \mathcal{L}_{QED} \]

Non-perturbative matching

LHC, SLC, LEP, LANSCE, SNS, ...

\[M_{W,Z} \]

\[\Lambda_H \sim \text{GeV} \]
\[\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[(1 + \delta_{RC} + \epsilon_L) \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\
+ \left. \epsilon_R \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\
+ \left. \epsilon_S \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} d \right. \\
- \left. \epsilon_P \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma_5 d \right. \\
+ \left. \epsilon_T \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + h.c. \]
Low-scale Lagrangian

\[\mathcal{L}_{CC} = -\frac{G_F^{(0)} V_{ud}}{\sqrt{2}} \times \left[(1 + \delta_{RC} + \epsilon_L) \, \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 - \gamma_5) d \\
+ \epsilon_R \, \bar{e} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma^\mu (1 + \gamma_5) d \\
+ \epsilon_S \, \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} d \\
- \epsilon_P \, \bar{e} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \gamma_5 d \\
+ \epsilon_T \, \bar{e} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.} \]

\[\varepsilon_i \sim (v/\Lambda)^2 \]
Match to hadronic description

- To disentangle short-distance physics, need hadronic matrix elements of SM (very precisely, 10^{-3} level) and BSM operators

- Tools (for both meson and nucleons):
 - symmetries of QCD \rightarrow chiral EFT
 - lattice QCD
Example: $g_{S,T}$ in LQCD

- Hadronic matrix elements ($g_{S,T}$) needed to extract short distance physics ($\varepsilon_{S,T}$) from neutron and nuclear beta decays.

\[
\langle p | \bar{u}d | n \rangle = g_S \bar{u}_p u_n \\
\langle p | \bar{u} \sigma_{\mu\nu} d | n \rangle = g_T \bar{u}_p \sigma_{\mu\nu} u_n
\]

$g_S = 0.8(4)$

$g_T = 1.05(35)$

- First lattice QCD estimates (still large systematics): realistic goal of $\delta g_{S,T}/g_{S,T} = 20\%$ within 2-3 years.

Bhattacharya, VC, Cohen, Filipuzzi, Gonzalez-Alonso, Graesser, Gupta, Lin, 2011
Low-energy probes
How do we probe the ϵ's?

- Low-energy probes fall roughly in two classes:

1. Differential decay rates: spectra, angular correlations (non V-A)

\[
d\Gamma \propto F(E_e) \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + \cdots \right] \right\}
\]

Jackson-Treiman-Wyld 1957
How do we probe the ε's?

- Low-energy probes fall roughly in two classes:

1. Differential decay rates: spectra, angular correlations (non V-A)

$$d\Gamma \propto F(E_e) \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + \cdots \right] \right\}$$

$a(\varepsilon_\alpha), A(\varepsilon_\alpha), B(\varepsilon_\alpha)$ isolated via suitable experimental asymmetries
How do we probe the ε's?

- Low-energy probes fall roughly in two classes:

 2. Total decay rates: normalization (V,A) matters!

$$\Gamma_k = (G_F^{(\mu)})^2 \times |\bar{V}_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \delta_{RC}) \times F_{\text{kin}}$$

Channel-dependent effective CKM element:

Hadronic matrix element

Radiative corrections (both SD and LD)
Differential probes

\[d\Gamma \propto F(E_e) \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + \cdots \right] \right\} \]

- **Linear order \(\varepsilon \)’s:** only \(\varepsilon_{S,T} \) survive!
 - \(b \) and \(B = B_0 + b \nu \frac{m_e}{E_e} \) directly sensitive to \(\varepsilon_{S,T} \)
 - \(a \) and \(A \) indirectly sensitive to \(\varepsilon_{S,T} \) via \(b \) in the asymmetry “denominator”

\[
\tilde{a} = \frac{a_{SM}}{1 + b \langle m_e/E_e \rangle} \quad \tilde{A} = \frac{A_{SM}}{1 + b \langle m_e/E_e \rangle}
\]
Differential probes

\[d\Gamma \propto F(E_e) \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + \cdots \right] \right\} \]

- **Quadratic order in \(\varepsilon \)'s**
 - \(b, b_\nu: \varepsilon_{S,T}^*(\varepsilon_L \pm \varepsilon_R); \quad \tilde{\varepsilon}_{S,T}^*(\tilde{\varepsilon}_L \pm \tilde{\varepsilon}_R) \)
 - \(a: |\varepsilon_S|^2 + |\varepsilon_T|^2 \); \quad |\tilde{\varepsilon}_S|^2 + |\tilde{\varepsilon}_T|^2 \)
 - \(A, B: (\tilde{\varepsilon}_L - \tilde{\varepsilon}_R)^2 \)
- Expect weaker constraints
- Focus on \(\varepsilon_{S,T} \)
Low-energy constraints on $\varepsilon_{S,T}$

- **Current**: $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \nu \gamma$

- $-1.0 \times 10^{-3} < g_S \varepsilon_S < 3.2 \times 10^{-3}$

- $-2.0 \times 10^{-4} < f_T \varepsilon_T < 2.6 \times 10^{-4}$

- $f_T = 0.24(4)$

Bychkov et al, 2007

Mateu-Portoles 07

Hardy-Towner 2009
Low-energy constraints on $\varepsilon_{S,T}$

- **Current:** $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \nu \gamma$

![Diagram](image)

- $0^+ \rightarrow 0^+$ constraint

 $-1.0 \times 10^{-3} < g_S \varepsilon_S < 3.2 \times 10^{-3}$

- $\pi \rightarrow e \nu \gamma$ constraint

 $-1.0 \times 10^{-3} < \varepsilon_T < 1.3 \times 10^{-3}$

- $g_S = g_T = 1$

- $b_{0+} = -(2.2 \pm 4.3) \times 10^{-3}$
Low-energy constraints on $\varepsilon_{S,T}$

- **Current:** $0^+ \rightarrow 0^+$ and $\pi \rightarrow e + \gamma$
- **Future:** neutron $b, b\nu$ @ 10^{-3} level (Nab; UCNB,b, abBA, ...)
Low-energy constraints on $\xi_{S,T}$

- **Current:** $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \nu \gamma$
- **Future:** neutron $b, b\nu \ @ 10^{-3}$ level ($Nab; UCNB,b, abBA, ...$)

\[\Lambda_S = 3.2 \text{ TeV} \]
\[\Lambda_S = 5 \text{ TeV} \]
\[\Lambda_T = 7 \text{ TeV} \]
\[\Lambda_T = 5 \text{ TeV} \]

\[\epsilon_S = 2 \frac{(v/\Lambda_S)^2}{\Lambda_S} \]
\[\epsilon_T = (v/\Lambda_T)^2 \]
\[v = (2\sqrt{2} \ G_F)^{-1/2} \]

$\epsilon_S = \epsilon_T = 1$

\[b_{0+} = -(2.2 \pm 4.3) \times 10^{-3} \]
Low-energy constraints on $\varepsilon_{S,T}$

- **Current:** $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \nu \gamma$
- **Future:** neutron b, b_ν @ 10^{-3} level (Nab; UCNB,b, abBA, ...)

Quark model estimates:

- $0.25 < g_S < 1$
- $0.6 < g_T < 2.3$

Adler et al, '75
Herczeg '01
Low-energy constraints on $\epsilon_{S,T}$

- **Current:** $0^+ \to 0^+$ and $\pi \to e \nu \gamma$
- **Future:** neutron b, b_ν @ 10^{-3} level (Nab; UCNB,b, abBA, ...)

$Lattice$ QCD

$g_S = 0.8 (4)$

$g_T = 1.05(35)$

Bhattacharya, Cirigliano, Cohen, Filipuzzi, Gonzalez-Alonso, Graesser, Gupta, Lin, 2011
Low-energy constraints on $\varepsilon_{S,T}$

- **Current:** $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \nu \gamma$
- **Future:** neutron $b, b_{\nu} @ 10^{-3}$ level (Nab; UCNB,$b, abBA, ...$)

(90% C.L.)

current lattice results

$\delta g_S/g_S = 10\%$

$\delta g_S/g_S = 20\%$

$\delta g_S/g_S = 50\%$

$\delta g_{S,T}/g_{S,T} \sim 20\%$ from LQCD needed to fully exploit experimental advances
Low-energy constraints on $\varepsilon_{S,T}$

- **Current:** $0^+ \rightarrow 0^+$ and $\pi \rightarrow e \nu \gamma$

Messages

- neutron b and B at 10^{-3} level will improve current bounds on $\varepsilon_{S,T}$
- Hadronic uncertainties ($g_{S,T}$) strongly dilute significance of bounds
- First lattice results: already great improvement over quark models
- $\delta g_{S,T}/g_{S,T} \sim 20\%$ needed to fully exploit $\sim 10^{-3}$-level measurements

$\delta g_{S,T}/g_{S,T} \sim 20\%$ from LQCD needed to fully exploit experimental advances
Low-energy constraints on $\tilde{\varepsilon}_{L,R,S,T}$

- Global fit to beta decay data

 $|g_S \tilde{\varepsilon}_S| < 6 \times 10^{-2}$

 $|g_T \tilde{\varepsilon}_T| < 2.5 \times 10^{-2}$

 $|\tilde{\varepsilon}_L \pm \tilde{\varepsilon}_R| < 7.5 \times 10^{-2}$

- Constraints are relatively weak, as expected

Severijns, Beck, Naviliat-Cuncic, 2006

90% CL
Universality probes

- Master formula for decay rates:

\[
\Gamma_k = \left(\frac{G_F}{\mu}\right)^2 \times |\overline{V}_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \delta_{RC}) \times F_{\text{kin}}
\]

\[
|\overline{V}_{ij}|^2 = |V_{ij}|^2 \times \left(1 + \sum_{\alpha} c_{k\alpha}^\alpha \epsilon_{\alpha}\right)
\]

- Precision determination of $\overline{V}_{ij} \Rightarrow$ constraints on the ϵ_i

\[
|\overline{V}_{ud}|^2 + |\overline{V}_{us}|^2 + |\overline{V}_{ub}|^2 - 1 = \Delta(\epsilon_i)
\]
- Status of V_{ud} and V_{us} and Cabibbo universality

Fit result

$V_{ud} = 0.97425 (22)$

$V_{us} = 0.2256 (9)$

$\Delta = (1 \pm 6) \times 10^{-4}$

Error equally shared between V_{ud} and V_{us}

$|\varepsilon_L + \varepsilon_R - \varepsilon_L^{(\text{lept})}| < 5 \times 10^{-4}$

90% CL: $(\Lambda_{L,R} > 11 \text{ TeV})$
- Status of V_{ud} and V_{us} and Cabibbo universality

$V_{us} = 0.2256 (9)$

$V_{ud} = 0.97425 (22)$

Error equally shared between V_{ud} and V_{us}

$\Delta = (1 \pm 6) \times 10^{-4}$

$|\varepsilon_L + \varepsilon_R - \varepsilon_{L,\text{lept}}| < 5 \times 10^{-4}$

90% CL:

$(\Lambda_{L,R} > 1 \text{ TeV})$

Messages

- Deep probe: current sensitivity well in the TeV region
- Powerful low-energy “boundary condition” for weak-scale models
High-energy probes
LHC (I): contact interactions

• The effective couplings ε_α contribute to the process $p p \rightarrow e \nu + X$

Moreover, using SU(2) symmetry, ε_α contribute to

• $p p \rightarrow e^+ e^- + X$

• $p p \rightarrow \nu \bar{\nu} + \text{jet} \quad (\text{“monojet”})$

Missing Transverse Energy
Focus on lepton transverse mass distribution in $pp \rightarrow e \nu + X$
- Focus on lepton transverse mass distribution in $p p \rightarrow e \nu + X$

- $m_T > 1 \text{ TeV}: \ n_{\text{obs}} = 1, n_{\text{bkg}} = 2.2 \pm 1.1 \Rightarrow \text{bound on "signal" BSM events}$

- $n_s < n_{s}\text{up} (n_{\text{obs}}, n_{\text{bkg}}) = 3.0 \quad 90\% \text{ CL}$
• Bounds on the effective couplings:

\[\sigma_{BSM}(\epsilon_\alpha) \mathcal{L} \xi_{\text{eff}} \equiv n_s < 3.0 \]

\[m_T > 1 \text{ TeV} \]

\[\sigma = \sigma_W + \sigma_{BSM}(\epsilon_\alpha) \]

\[= \sigma_W \left[(1 + \epsilon_L^{(v)})^2 + |\tilde{\epsilon}_L|^2 + |\epsilon_R|^2 \right] - 2 \sigma_{WL} \epsilon_L^{(c)} \]

\[+ \sigma_R \left[|\tilde{\epsilon}_R|^2 + |\epsilon_L^{(c)}|^2 \right] \]

\[+ \sigma_S \left[|\epsilon_S|^2 + |\tilde{\epsilon}_S|^2 + |\epsilon_P|^2 + |\tilde{\epsilon}_P|^2 \right] \]

\[+ \sigma_T \left[|\epsilon_T|^2 + |\tilde{\epsilon}_T|^2 \right] \]

Detection efficiency * geometric acceptance
• Bounds on the effective couplings:

$$\sigma_{BSM} (\varepsilon_\alpha) \mathcal{L} \; \varepsilon_{\text{eff}} \equiv n_s < 3.0$$

$$m_T > 1 \text{ TeV}$$

$$\sigma \bigg|_{m_T > m_T^\text{m}} = \sigma_W + \sigma_{BSM} (\varepsilon_\alpha)$$

$$= \sigma_W \left(1 + \varepsilon_L^{(v)} \right)^2 + |\tilde{\varepsilon}_L|^2 + |\varepsilon_R|^2 \right) - 2 \sigma_{WL} \varepsilon_L^{(c)}$$

$$+ \sigma_R \left(|\tilde{\varepsilon}_R|^2 + |\varepsilon_L^{(c)}|^2 \right)$$

$$+ \sigma_S \left(|\varepsilon_S|^2 + |\tilde{\varepsilon}_S|^2 + |\varepsilon_P|^2 + |\tilde{\varepsilon}_P|^2 \right)$$

$$+ \sigma_T \left(|\varepsilon_T|^2 + |\tilde{\varepsilon}_T|^2 \right)$$

Incoherent contributions (interference $\sim m/E$)

SM + vertex corrections + interference terms

VC, Gonzalez-Alonso, Graesser, in progress
• Bounds on the effective couplings:

\[\sigma_{BSM}(\varepsilon_\alpha) \mathcal{L} \varepsilon_{\text{eff}} \equiv n_s < 3.0 \]

\[m_T > 1 \text{ TeV} \]

|\varepsilon_{S,P}|, |\tilde{\varepsilon}_{S,P}| < 1.7 \times 10^{-2}

|\varepsilon_T|, |\tilde{\varepsilon}_T| < 3.4 \times 10^{-3}

|\tilde{\varepsilon}_R| < 6.3 \times 10^{-3}

Already strong bounds on “incoherent” contributions, regardless of neutrino chirality
β decays vs LHC

<table>
<thead>
<tr>
<th></th>
<th>ε_{L+R}</th>
<th>ε_S</th>
<th>ε_T</th>
<th>$\tilde{\varepsilon}_S$</th>
<th>$\tilde{\varepsilon}_T$</th>
<th>$\tilde{\varepsilon}_{L,R}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β decays</td>
<td>5×10^{-4}</td>
<td>8.0×10^{-3}</td>
<td>1.3×10^{-3}</td>
<td>7.5×10^{-2}</td>
<td>2.5×10^{-2}</td>
<td>7.5×10^{-2}</td>
</tr>
<tr>
<td>LHC</td>
<td>--</td>
<td>1.7×10^{-2}</td>
<td>3.4×10^{-3}</td>
<td>1.7×10^{-2}</td>
<td>3.4×10^{-3}</td>
<td>6.3×10^{-3}</td>
</tr>
</tbody>
</table>

- **Unmatched low-energy sensitivity**
- **LHC limits close to low-energy. Interesting interplay in the future**
- **LHC already superior to low-energy! Need $\delta a_{GT}/a_{GT} < 0.05\%$ to match LHC**
Low-energy constraints are currently stronger
$\varepsilon_{S,T}$: β decays vs LHC

LHC is catching up rapidly!

~ full dataset at 7 TeV

LHC @ 7 TeV, 10 fb$^{-1}$

LHC @ 7 TeV, 1 fb$^{-1}$

Low-energy current
$(0^+ \rightarrow 0^+ \pi \rightarrow e\nu\gamma)$

(90% C.L.)
$\epsilon_{S,T}$: β decays vs LHC

LHC projected limits: based on aggressive m_T cut (to reduce bkg events < 1) and assumption of no observed events
\[\varepsilon_{S,T} : \beta \text{ decays vs LHC} \]

Messages

- LHC and b, B at 10^{-3} level will compete in setting strongest bounds on ε_S and ε_T probing effective scales $\Lambda_{S,T} \approx 7\,\text{TeV}$

- b and B at 10^{-4} level would give unmatched discovery potential: strong motivation to pursue these experiments
LHC (II): beyond contact

- What if new interactions are not “contact” at LHC energy? How are the ε bounds affected?

- Explore classes of models generating $\varepsilon_{S,T}$ at tree-level. Low-energy vs LHC amplitude:

$$A_\beta \sim g_1 g_2 / M^2 \equiv \varepsilon$$

$$A_{LHC} \sim \varepsilon \ F\left[\sqrt{s}/M, \sqrt{s}/\Gamma(\varepsilon)\right]$$

- Study dependence of the ε bounds on the mediator mass M
s-channel mediator

- Scalar resonance in s-channel
- Upper bound on ε_S based on $m_T > 1$ TeV

![Graph](image)

σ suppression due to $m < (m_T)_{\text{cut}}$

ε_S

Improvable with lower $(m_T)_{\text{cut}}$

But larger SM bkg

Decoupling regime**
t-channel mediator

- Scalar leptoquark S_1 $(3^*,1,1/3)$
- $\varepsilon_T = -1/4$ $\varepsilon_S = -1/4$ ε_P

σ suppression due to $1/(m^2 - t)$ vs $1/m^2$

Decoupling regime

M_{LQ} (TeV)
t-channel mediator

Scalar leptoquark S = (2*, 1, 1/3)

\(\varepsilon_T = -1/4 \quad \varepsilon_S = -1/4 \quad \varepsilon_P ... \)

\(\sigma \) suppression due to \(1/(m^2 - t) \) vs \(1/m^2 \) decoupling regime

- For TeV-scale mediator mass (m > 1 TeV), LHC bounds on \(\varepsilon \)'s based on contact interactions range from robust (t-channel) to conservative (s-channel)
- For low mass mediators (m < 0.5 TeV), the LHC bounds on \(\varepsilon \)'s quickly deteriorate: limits based on contact interactions are too optimistic

Messages

- For TeV-scale mediator mass (m > 1 TeV), LHC bounds on \(\varepsilon \)'s based on contact interactions range from robust (t-channel) to conservative (s-channel)
- For low mass mediators (m < 0.5 TeV), the LHC bounds on \(\varepsilon \)'s quickly deteriorate: limits based on contact interactions are too optimistic
Summary

- Improved picture of nonstandard CC interactions through combination of low-energy and collider probes**

<table>
<thead>
<tr>
<th></th>
<th>ε_{L+R}</th>
<th>ε_S</th>
<th>ε_T</th>
<th>$\tilde{\varepsilon}_S$</th>
<th>$\tilde{\varepsilon}_T$</th>
<th>$\tilde{\varepsilon}_{L,R}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β decays</td>
<td>5×10^{-4}</td>
<td>8.0×10^{-3}</td>
<td>1.3×10^{-3}</td>
<td>7.5×10^{-2}</td>
<td>2.5×10^{-2}</td>
<td>7.5×10^{-2}</td>
</tr>
<tr>
<td>LHC</td>
<td>--</td>
<td>1.7×10^{-2}</td>
<td>3.4×10^{-3}</td>
<td>1.7×10^{-2}</td>
<td>3.4×10^{-3}</td>
<td>6.3×10^{-3}</td>
</tr>
</tbody>
</table>

** Based on short-distance origin of new interactions
Summary

• Improved picture of nonstandard CC interactions through combination of low-energy and collider probes

• Low-energy:

 • Illustrated the importance of $g_{S,T}$ to obtain bounds on short distance S,T couplings. First lattice QCD estimate

 • Established relevance of 10^{-3}-level measurements of b,B to probe $\varepsilon_{S,T}$

• Collider:

 • Demonstrated importance of LHC in setting bounds on CC non-standard couplings: it’s catching up fast!

 • Explored dependence of LHC bounds on the mediator mass (tree-level in s and t channels)
Extra Slides
Complementarity: an example

- Scalar resonance in s-channel

\[\epsilon_S = 2\lambda_S \lambda_l \frac{v^2}{m^2} \]

- Observation of such a scalar resonance implies a lower bound on effective scalar coupling probed at low-energy:

\[\sigma \cdot \text{BR} \leq \frac{|V_{ud}|}{12v^2} \frac{\pi}{\sqrt{2N_c}} |\epsilon_S| \tau L(\tau) \]

\[\tau = \frac{m^2}{s}, \]
• If LHC can determine scalar nature of the resonance, then predict a “guaranteed signal” for beta decay

• If LHC cannot determine spin of resonance, beta decay searches (positive or negative) provide discriminating input