Hyperpolarized ¹²⁹Xe from the lab to the clinic: mitigating Rb cluster formation to boost polarization

Imaging with hyperpolarized (HP) ¹²⁹Xe MRI has seen much development in recent years, such that it now competes with the increasingly-scarce polarizable isotope ³He in terms of image quality (see **Fig. 1**).

Additionally, HP ¹²⁹Xe MRI has useful properties that ³He does not, namely, ¹²⁹Xe is soluble in parenchymal tissue, plasma and red blood cells, where it exhibits chemical shifts exceeding 200 ppm, that enable the separate characterization of those compartments in vivo for the purposes of quantifying lung function. The challenges, however, in utilizing ¹²⁹Xe MRI for these purposes is that only about 1% of the magnetization transfers from the airspaces to the bloodstream, and the NMR signal has an intrinsically short T_2^* (decay time). We have mitigated these limitations through pulse sequence optimization, as well as reconstruction techniques, but fundamentally, the field is signal starved in terms of polarization.

Figure 1: Typical ¹²⁹Xe MRI of the human lung.

For nearly all polarizers built to date, both peak ¹²⁹Xe polarization and the rate at which it is produced fall far below those predicted by the standard model of Rb metal vapor, spin-exchange optical pumping (SEOP). Through the comprehensive characterization of a high-volume, flow-through ¹²⁹Xe polarizer, measuring ¹²⁹Xe peak polarization and production as a function of gas flow rate, SEOP cell size, laser power and linewidth, and SEOP temperature, we have identified a mechanism that limits peak polarization for all cells to a factor of 2-3 times lower than predicted at all absorption levels. These systematic deviations from theory can be explained by invoking the presence of paramagnetic Rb clusters within the vapor.

The fundamental basis of SEOP theory is that optical pumping, and spin-exchange, occur only with free atomic Rb vapor. However, Rb cluster, $[Rb_n]$, formation within saturated alkali vapors is well established in the literature, and their interaction with resonant laser light was recently shown to create plasma-like conditions (see **Fig. 2**). Such cluster systems cause both Rb and ¹²⁹Xe depolarization, as well as excess photon scattering. These effects were incorporated into the SEOP model by assuming that clusters are activated in proportion to excited-state Rb number density and by further estimating physically reasonable values for the nanocluster-induced, velocity-averaged spin-destruction cross-section for Rb ($<\sigma_{cluster-Rb}v > \approx 4 \times 10^{-7}$ cm³s⁻¹), ¹²⁹Xe relaxation cross-section ($<\sigma_{cluster-Xe}v > \approx 4 \times 10^{-13}$ cm³s⁻¹), and a non-wavelength-specific, photon-scattering cross-section ($\sigma_{cluster} \approx 1 \times 10^{-12}$ cm²). The resulting modified SEOP model now closely matches experimental observations.

Figure 2: A simplified representation of the Rb vapor inside an SEOP cell, with the addition of postulated clusters.