GEM-based tracking detectors for Nuclear Physics Experiments Nilanga Liyanage University of Virginia

Gaseous Detectors

- Predate nuclear physics: invented by Hans Geiger in 1908 (Rutherford, Geiger, Marsden gold foil experiment 1911)
- Essential features:
 - Ionization/drift region: high energy particles creates a trail of electron-ion pairs in an inter gas (reduces recombination)
 - ~ 1-2 Primary ionizations per mm (at 1 atm), energetic electrons created; ionize more nearby atoms: ionization clusters.
 - ~ 27 eV needed per ionization in Argon
 - Electrons drift towards anode (v ~ few cm per μs), ions drift to cathode at speeds thousand times slower.
 - Region of strong electric field (>~ 10 kV/cm/atm): electrons gain sufficient energy between two collisions to cause ionization:

•Avalanche Multiplication.

Gaseous Detectors

• Avalanche increases exponentially:

 $dN = N\alpha ds$.

$$\frac{N}{N_{\rm o}} = \exp \int_a^b \alpha {\rm d}s.$$

 α is the first Townsend coefficient: depends on E, gas composition and density. a and b are the boundaries of the region where E is sufficiently strong.

- Gas gain for a wire chamber could be ~ 10^{5} - 10^{6} .
- Photons created in avalanche could cause after-pulses away from the primary track: unstable behavior and loss of resolution.
- A quencher, a molecular gas with high photo-absorption coefficient: ex, CO2, hydrocarbon gases.

Gaseous Detectors: wire chambers

• Wire chamber Has been the work-horse of nuclear and particle physics.

- highly efficient (> 99%)
- cost effective
- low mass
- Rad-hard
- could cover very large areas
- good position resolution (~ 100- 200 μm for a MWDC)

Issues with wire chambers

- Slow drift of ions back to the cathode causes space-charge issues that limit the rate (< ~ $10^{5}/cm^{2}$, more commonly < $10^{4}/cm^{2}$).
- High gain around sense wires contribute to high noise, unstable behavior.
- secondary avalanches.
- Ionization clusters limit position resolution
- Plasmas formed during avalanche formation in the strong E field cause aging
- Long electron drifts: susceptible to magnetic field effects.
- New high luminosity, high precision experiments asking for a new breed of tracking detectors to:
 - operate in high rate environments (MHz/cm² or higher)
 - provide high position resolutions (< 75 μ m)
 - cover very large areas (10s 100s of m²)

Micro-Patters Gas Detectors (MPGD)

- Developed in the last 25 years.
- Based on microelectronics-photo-lithography techniques.
- 50 100 μ m amplification gap with adjacent charge collection cathodes: hugely reduced space-charge effects.
- Rates of (100's of MHz/cm² or higher)
- 100-500 μm readout strip/pad/pixel sizes: charge weighted average of clusters along the track: ~ 50 mm position resolutions
 - Micro-strip gas chambers (MSGC)
 - Micro-mesh gas detector (Micromegas)
 - Micro-grove detectors
 - Gas Electron Multiplier (GEM) detectors.

Why GEMs?

Requirement	Drift chamber	MPGD	Silicon
High rates up to 10 MHz/cm ²	NO	Yes	Yes
Resolution	~ 150 μm	~ 50 μm	< 30 μm
Cost of Large area coverage	Low	Low	Very high
GEMs have had lower spark rates	G	ν EM μM	S

GEMs provide a cost effective solution for high resolution tracking under high rates over large areas.

GEM working principle

Recent technology: F. Sauli, Nucl. Instrum. Methods A386(1997)531

COMPASS GEM Tracker

80

60

50

40

30

20

Events 70

 \Box A tracker of twenty two 31 cm x 31 cm GEM chambers successfully operated for years Rates as high as 2.5 MHz/cm²

Recent GEM chamber projects

board $(r-\phi)$

section $(r_{min} = 10.5 \text{ cm},$ $r_{max} = 39 \text{ cm}$

Cylindrical GEM for KLOE

STAR Forward GEM Tracker

- 6 triple-GEM disks around beam
- IR~10.5 cm, OR~39 cm
- APV25 electronics

TOTEM T2 telescope

Many GEM based TPCs and Cherenkovs. Also GEMs have found applications in, Medical imaging, National Security and other areas

GEM chamber electronics

- The RD-51 Scalable Readout System provides a low-cost, common platform that can accommodate different readout chips.
- Currently tested with APV25-S1 chip; other chips are also possible
- Current efforts to increase rates, commercialize production.

GEMs are now "all grown up" and ready for the next steps

Huge advances in the last 10 years

- Very large area GEM foils
- Industrial production of GEMs
- Timing GEMs
- New readouts
- Analysis techniques for high rate operation.
- New large Area GEM projects
- cylindrical GEMs
- pixel GEMs
- spherical GEMs
- •

Recent developments towards large GEM foils

• Base material only ~ 50 cm wide roll.

• Used a double mask technique for etching: hard to align the two masks accurately: Max area limited to ~ 50 cm x 50 cm previously.

Single Mask technique allows to make GEM foils as large as $200 \text{ cm} \times 50 \text{ cm}$

- Splicing GEM foils together: seam is only 2 mm wide
- Performance of the rest of the GEM foil unaffected

Single Mask technique + splicing allows 200 cm x 100 cm foils

• CERN MPGD workshop (TE/MPE/EM Workshop) is now getting new machinery and will be moving to a new building:

Increased production capacity

Industrial Production of GEMs

- Many anticipated users of GEMs in the near future; CERN shop can't keep up.
- Several Industrial production around the world starting with CERN technology transfer:
 - TechEtch, Plymouth, MA, USA : GEM foils up to ~ 40 cm; produced all foils for STAR FGT.
 - NewFlex Technology, South Korea: produced the tested foils up to 10 x 10 cm2; plans for large production up to 1 m foils.
 - TechTra in Poland
 - India
 - China
 - •...

Korean GEM, double mask technology

- Still most of the GEM foils in the world come from the CERN MPGD workshop (TE/MPE/EM Workshop).
- Recently upgraded new machinery and located in a new building

Increased production capacity

Large Area GEM chamber projects for 12 GeV Jefferson lab.

Jefferson Lab SuperBigbite Spectrometer

 Reconfigurable detectors

SBS projected data for GEp/GMp

SBS setup for for GEn and GMn measurements

SBS projected data for GEn/GMn

SBS projected data for GMn

GEM Trackers for SBS

Basic Module of SBS Back Trackers

Features:

size: 50x60 cm² active area
thin frame: only 8 mm wide
single mask tech. GEM foils
2D strip readout (a la COMPASS) - 0.4 mm pitch
X= 0.54%X0

UVa GEM Lab

Storage of the frames

Large area $(3 \times 7 \text{ m}^2)$ class 1000 Clean Room

Frames holder for cleaning in USB

Ultra sonic bath (USB) with demineralized Water

Polarimeter GEM module: components

GEM foil (CERN PCB workshop)

Flexible 2D readout board (CERN PCB workshop)

Support frame with spacers (RESARM Belgium)

Honeycomb support board (CERN PCB workshop)

Foil testing and Leakage Current Measurement

- Rapid HV ramp-up to 550 V -causes quick burn-up of dust without polymerization or damage to foil.
- At 550 V: the initial current is a few of μA (re: capacitance of the sector).
- Then quickly drops and stabilizes to less ~ 1 nA leakage current: far better than the 5 nA requirement.
- Initially a few μA level sparks; spark rate slows down to quickly after that.

- The current drawn by the GEM foil measured using a picoammeter (through a Labview interface and saved into a text file.)
- the ~ 100 nA spike associated with someone moving near the HV test box.

Foil testing and Leakage Current Results

Preparation of the frames

Spacers sanded, then frames cleaned in Ultra-sonic bath with demineralized Water

Loading the frame into the dry N2 box for testing at 4000 V

Dried for 4 days under a filter hood .

Machined surfaces sealed with a layer of polyurethane (Nuvovern LW) to prevent surface irregularities, residual fibers or sharp edges in the active area of the chamber

Foil Stretching and Glueing

50 cm × 50 cm GEM stretcher at Uva

- Stretcher concept from LNF / Bencivenni et al. and INFN.
- \Box Stretching time ~ 1 hours
- □ Foil Tension: T ~ 0.3 kg/cm

Frame glued on. Overnight drying.

Final Assembly

Four large dowel pins at the corners used to align the frames to within 100 μ m

GEM foil glued to the readout board

weeks.

Clean room equipped for the parallel production of two modules in 3

SBS GEM module

□ 4 full size modules completed at Uva: all fully operational.

SBS Back Tracker Prototype II

SBS GEM module full-size prototype results

- Bench test with cosmics: acceptance • limited by trigger scintillators
- Gas: Argon/CO2 70:30, HV: 4300 V • (a gain of ~8000)
- S/N ratio is ~ 25:1 on average ٠
- Clean X-Y ADC correlation: critical • for multi-hit tracking

2D X/Y strips hits event on prototype I

Hit Cluster Position in X (mm)

SBS Prototype I: Gain uniformity

SBS GEM module full-size prototype results

3/12/14

GEM chambers for Hall A SoLID spectrometer

Solenoidal Large Intensity Device for Precision Study of Nucleon Structure and Test of Standard Model

Physics Program for SoLID

 SoLID: large acceptance, capable of handling high luminosity (up to~10³⁹ with baffle, up to ~10³⁷ without baffle)
 Ideal for precision Inclusive-DIS (PVDIS) and SIDIS experiments

Excellent for selected exclusive reactions (ex. J/Ψ)

• Five high impact experiments approved:

SIDIS: E12-10-006 (³He-T), E12-11-007 (³He-L), E12-11-108 (proton-T)

PVDIS: E12-10-007 (deuteron and proton) SoLID CLEO SIDIS & J/W

•SoLID requires 150 GEM modules with a total active area of ~ 35 m²

- Twice the size of SBS tracker
- •Requirements similar to a future EIC forward tracker
- UVa group is conducting large GEM R&D towards SoLID GEMs
- The first prototype fabrication is underway.

SoLID-EIC GEM Tracker R&D

The 1 m long GEM foil for SoLID-EIC prototype GEM

Cluster position (mm) for EICTOP

1200 0

The U/V COMPASS-like readout board

Mean RMS 15.99 5.126

50 40 30 20 10 0 10 15 20 ~ 2000 e- to 4000 e-With a gain of 8000 the average signal per strip will be ~ 50,000 e-

Frequency

- COMPASS-like 2D stereo angle (12°) U/V readout
- Pitch = 550 μm, top strips = 140 μm,
 bottom = 490 μm
- The support for the r/o based on
 Rohacell foam instead of honeycomb sandwiched between 100 mm fiberglass

2

Large Size GEMs in MT6-2B @ FTBF (Fermilab)

Preliminary Results with Fermilab Test Beam

SRS Readout With DATE @ FTBFL (FNAL)

- Beam structure: 1min cycle, 4s spills 10k to 35k particles/spill
- 64 APV25 with SRS+SRU+ 4FEC/ADC combos
- DAQ rate is up to 400 Hz (average over 4s spill)
- Using 3,6 and 9 time slices (25ns) for digitization
- Trigger: coincidence of 3 scintillators

New developments and Future Directions

Already tested for 30 cm x 30 cm foils Reduces the assembly time from ~ 10 days to few hours.

Issue: material at the edges

Timing GEMs for Trigger

Large prototype GEM module for CMS Standard GEM Timing Performance 99 cm × (22 - 45.5) cm

CMS high-eta GEM tracker proposal

1.04

ME 2

800

400

200

600

CSC

1000

1.2

De

1200

Z (cm)

GE1/1 detectors (72 chambers) GEM s for triggering and tracking - Proposal to cover the 1.6 < $|\eta|$ < 2.4 region with GEMs. • GEMs for 240 GEM chambers Total active area covered ~ 300 m² (E D) 800 eta = 0.8 / DT RPC MB4 700 MB 3 600 MB2 500 400 300 200 100 GE2/1 detectors ME 1

(144 chambers)

Different Readout Schemes.

Towards very large GEM chambers

- Rui de Oliveira's group at CERN now has the technical feasibility to produce 50 cm x 200 foils.
- Jefferson lab-UVa collaboration has the expertise, infra-structure and capability to build such a GEM chamber
- Would be a breakthrough in large area tracking technology.
- Size ideally matched for nuclear physics detectors: Huge boost to future experiments.
 - Cover large areas with no dead zones.
- Link to industrial applications beyond nuclear physics: National security, Radiation detection, Medical Physics

Proposed Large Area GEM chamber

- 200 cm x 50 cm active area.
- Base frame with wide sides
- U-V readout from both sides
- 400 micron strip pitch.
- longest strip is ~ 35 cm

- Readout cards in two layers.
- Readout: 18 k of APV-25 based SRS electronic channels

Frame design underway

•		•
	-	

- Design/mechanical studies underway within Solidworks to evaluate:
- Evaluate stress on frames
- Foil deformations
- Gas flow.
- Frame assembly techniques

Conclusion

- GEM: cost effective solution for high resolution tracking in hostile environments.
- Major developments in the last few years.
- Now technology ready for large scale projects.