Precision Muon Lifetime Experiments

Steven Clayton *University of Illinois at Urbana-Champaign*

1

May 7, 2008, LANL Seminar

ട്ര

Improved Measurement of the Positive-Muon Lifetime and Determination of the Fermi Constant

D. B. Chitwood,¹ T. I. Banks,² M. J. Barnes,³ S. Battu,⁴ R. M. Carey,⁵ S. Cheekatmalla,⁴ S. M. Clayton,¹ J. Crnkovic,¹ K. M. Crowe,² P. T. Debevec,¹ S. Dhamija,⁴ W. Earle,⁵ A. Gafarov,⁵ K. Giovanetti,⁶ T. P. Gorringe,⁴ F. E. Gray,^{1,2} M. Hance,⁵ D. W. Hertzog,¹ M. F. Hare,⁵ P. Kammel,¹ B. Kiburg,¹ J. Kunkle,¹ B. Lauss,² I. Logashenko,⁵ K. R. Lynch,⁵ R. McNabb,¹ J. P. Miller,⁵ F. Mulhauser,¹ C. J. G. Onderwater,^{1,7} C. S. Özben,¹ Q. Peng,⁵ C. C. Polly,¹ S. Rath,⁴ B. L. Roberts,⁵ V. Tishchenko,⁴ G. D. Wait,³ J. Wasserman,⁵ D. M. Webber,¹ P. Winter,¹ and P. A. Żołnierczuk⁴

(MuLan Collaboration)

Measurement of the Muon Capture Rate in Hydrogen Gas and Determination of the Proton's Pseudoscalar Coupling g_P

V. A. Andreev,¹ T. I. Banks,² T. A. Case,² D. B. Chitwood,³ S. M. Clayton,³ K. M. Crowe,² J. Deutsch,⁴ J. Egger,⁵
S. J. Freedman,² V. A. Ganzha,¹ T. Gorringe,⁶ F. E. Gray,² D. W. Hertzog,³ M. Hildebrandt,⁵ P. Kammel,^{3,*} B. Kiburg,³
S. Knaack,³ P. A. Kravtsov,¹ A. G. Krivshich,¹ B. Lauss,² K. L. Lynch,⁷ E. M. Maev,¹ O. E. Maev,¹ F. Mulhauser,^{3,5}
C. S. Özben,³ C. Petitjean,⁵ G. E. Petrov,¹ R. Prieels,⁴ G. N. Schapkin,¹ G. G. Semenchuk,¹ M. A. Soroka,¹ V. Tishchenko,⁶ A. A. Vasilyev,¹ A. A. Vorobyov,¹ M. E. Vznuzdaev,¹ and P. Winter³

(MuCap Collaboration)

¹Petersburg Nuclear Physics Institute, Gatchina 188350, Russia
²University of California, Berkeley, and LBNL, Berkeley, California 94720, USA
³University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
⁴Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
⁵Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
⁶University of Kentucky, Lexington, Kentucky 40506, USA
⁷Boston University, Boston, Massachusetts 02215, USA
(Received 16 April 2007; published 16 July 2007)

Paul Scherrer Institut

Villigen, Switzerland

μSR

1.8 mA cyclotron,590 MeV protons

Swiss Light Source

MuLan: Muon Lifetime Analysis $\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu_{\mu}}$

Muon Lifetime

Fundamental electro-weak couplings

The Standard Model Fermi extraction is no longer theory limited.

μ SR rotation results in an oscillation of the measurement probability for a given detector.

The experimental concept in one animation ...

Rapidly precessed here $\frac{8}{8}$

Create a time-structured "surface" muon beam with flux of roughly 10⁷ μ^+ Hz @ 28 MeV/c, (~ 4 MeV.).

2004 Physics Results: ~10 ppm statistical uncertainty

The fit residuals show no structure...

More fit consistency

MuLan

Systematics

"Early-to-late" changes

- Instrumental shifts
 Gain or threshold
 Time response
 Kicker and accidentals
- Effective acceptance

Residual polarization or precession target: Arnokrome III (AK-3) internal ~4000 G symmetric detector stray muons studied

- Pileup leads to missed events

Source Size (ppm) Extinction stability 3.5Errant muon stops 2.02.0Dead time correction 1.8 1.0 Repeated events (+1 ppm shift)1.0Multiple hit timing shifts 0.80.75.2

500 MHz WFD

MuLan result from the 2004 Data is in excellent agreement with the world average

$G_F = 1.166 \ 371(5) \ x \ 10^{-5} \ GeV^{-2}$ (4.1 ppm)

 MuLan result:
 τ_{μ} = 2197.013(21)(11) ns (11.0 ppm)

 MuLan goal:
 1 ppm uncertainty on τ_{μ} (0.5 ppm on G_F)

http://arxiv.org/abs/0704.1981 Chitwood et al., Phys. Rev. Lett. 99, 032001 (2007)

First physics from MuCap $\mu + p \rightarrow n + \nu_{\mu}$

Nucleon Form Factors

$$\mathcal{M} = \frac{G_F}{\sqrt{2}} V_{ud} \langle \nu_{\mu} | \gamma^{\alpha} (1 - \gamma_5) | \mu \rangle \langle n | V^{\alpha} - A^{\alpha} | p \rangle u \rangle$$

$$V^{\alpha} = \underline{g_v(q^2)} \gamma^{\alpha} + i \underline{g_m(q^2)} \sigma^{\alpha\beta} \frac{q_{\beta}}{2M_N} + \underbrace{g_s(q^2)}_{=0} \frac{q^{\alpha}}{m_{\mu}} \underbrace{\mathsf{CVC}}_{\mathsf{FF's}} \overset{\mathsf{EM}}{\mathsf{FF's}}$$

$$A^{\alpha} = \underline{g_a(q^2)} \gamma^{\alpha} \gamma_5 + i \underline{g_p(q^2)} \sigma^{\alpha\beta} \frac{q_{\beta}}{2M_N} \gamma_5 + g_p(q^2) \frac{q^{\alpha}}{m_{\mu}} \gamma_5$$

$$\mathsf{n-decay} \qquad \mathsf{G-parity} \qquad \mathsf{17}$$

Axialvector Form Factor g_A

$$g_a(-0.88m_\mu^2) = 1.247 \pm 0.004$$

Introduces 0.45% uncertainty to $\Lambda_{\rm S}$ (theory)

Pseudoscalar Form Factor g_p

g_P determined by chiral symmetry of QCD:

$$g_p(q^2) \!=\! \frac{2m_\mu g_{\pi NN}(q^2) F_\pi}{m_\pi^2 \!-\! q^2}$$

 g_{P} = (8.74 ± 0.23)

PCAC pole term

ChPT leading order

- solid QCD prediction via ChPT (2-3% level)
- basic test of QCD symmetries

Recent reviews:

T. Gorringe, H. Fearing, Rev. Mod. Physics 76 (2004) 31 V. Bernard et al., Nucl. Part. Phys. 28 (2002), R1

Phenomenological Calculation

- Gives an expression in terms of form factors g_V , g_M , g_A , g_P . \bullet
- W.f.s are solutions to the Dirac equation. •
- μ in bound state: lacksquare

$$e^{-iE_{\mu}t}\psi_{\mu}(ec{x}) = e^{-iE_{\mu}t}\phi_{\mu}(ec{x})\left(egin{array}{c} \chi_{\mu} \ 0 \end{array}
ight), \quad \phi_{\mu}(ec{x}) = rac{1}{\sqrt{\pi a_{0}^{3}}}e^{-r/a_{0}}$$

- Non-relativisitic expansion to order $v_{nucleon}/c$: •
 - effective Hamiltonian in terms of "Primikoff factors" and Pauli matrices.
 - particle states in terms of 2-spinors (χ).
 - results in an explicit expression for the transition rate W:

$$W = \frac{C_p^2}{2\pi^2 a_0^3} \frac{E_\nu^2}{1 + E_\nu / \sqrt{m_n^2 + E_\nu^2}} G_V^2 (1 + 3\eta) \left(1 - \frac{\langle \vec{\sigma} \cdot \vec{\sigma}_A \rangle \xi}{1 + 3\eta}\right)$$

total up spin dependence

$$\Lambda_{\rm S} = W_{F=0} = 690.0 \text{ s}^{-1}, \qquad \Lambda_{\rm T} = W_{F=1} = 11.3 \text{ s}^{-1}$$

$$\mu p(\uparrow \downarrow) \text{ singlet} \qquad \mu p(\uparrow \uparrow) \text{ triplet}$$

20

) triplet

u**D(**↑↑)

Sensitivity of Λ_S to Form Factors

 $\frac{\partial \Lambda_S}{\partial g_X} \frac{g_X}{\Lambda_S}$ from Govaerts, Lucio-Martinez, Nucl. Phys. A 678 (2000) 110-146

$\mu^{\text{-}}$ Stopping in Hydrogen

- Quickly forms a μp atom, transitions to ground state, transitions to singlet hyperfine state.

Bohr radius a $\approx a_0 m_e/m_\mu \approx a_0/200$

- Most of the time, the μ decays: $\mu^- \rightarrow \nu_{\mu} + e^- + \nu_e$ rate $\lambda_0 \approx 1/\tau_{\mu^+}$ BR \approx 0.999
- Occasionally, it *nuclear* captures on the proton: $\mu^- + p \rightarrow \nu_{\mu} + n$ rate Λ_s BR~10⁻³ $\mu^- + p \rightarrow \nu_{\mu} + n + \gamma$ BR~10⁻⁸, E>60 MeV

The goal of μ Cap is Λ_s to 1% precision: $\Lambda_s = \lambda - 1/\tau_{\mu^+}$

Complications: molecular formation/transitions, transfer to impurity atoms, ...

Muon Atomic/Molecular State in Experiment must be known to connect with theory.

Previous Data on g_p

No common region of overlap between both expts. and theory

g_P basic and experimentally least known weak nucleon form factor

Muon atomic transitions set stringent purity requirements.

 H_2 must be pure isotopically and chemically: $c_d < 1$ ppm, $c_z < 10$ ppb

μd Diffusion into Z > 1 Materials

- Ramsauer-Townsend minimum in the scattering cross section
- μ d can diffuse ~10 cm before muon decay, possibly into walls.

Experimental Challenges

1) Unambiguous interpretation requires low-density hydrogen target to reduce μ -molecular formation.

2) H2 must be pure chemically ($c_0, c_N < 10$ ppb) and isotopically ($c_d < 1$ ppm).

3) All neutral final state of muon capture is difficult to detect (would require absolute calibration of neutron detectors, accurate subtraction of backgrounds).

μCap Method: Lifetime Technique

 μ Cap measures the lifetime of μ^{-} in 10 bar Hydrogen.

Repeat 10^{10} times for a 10 ppm precision lifetime measurement. Compare to μ^+ lifetime:

$$\lambda_{\mu}^{-} \approx \lambda_{\mu}^{+} + \Lambda_{S}$$

 $\Rightarrow \Lambda_{S}$ to 1% precision

slope =
$$\lambda_{\mu}^{-} \equiv 1/\tau_{\mu}^{-}$$

slope = $\lambda_{\mu}^{+} \equiv 1/\tau_{\mu}^{+}$
 ΔT

3D tracking w/o material in fiducial volume

Time Projection Chamber (TPC)

10 bar ultra-pure hydrogen, 1% LH₂
2.0 kV/cm drift field
>5 kV on 3.5 mm anode half gap bakable glass/ceramic materials

3D tracking w/o material in fiducial volume

Time Projection Chamber (TPC)

ս

10 bar ultra-pure hydrogen, 1% LH₂
2.0 kV/cm drift field
>5 kV on 3.5 mm anode half gap bakable glass/ceramic materials

Observed muon stopping distribution

30

μCap Method: Clean μ Stop Definition

Each muon is tracked in a time projection chamber.

Data Acquisition

μCap Detailed Diagram

Tracking of Muon to Stop Position in Ultrapure H₂ Gas Tracking of Decay Electron

Commissioning and First Physics Data in 2004

Gas impurities (Z > 1) are removed by a continuous H₂ ultra-purification system (CHUPS).

Commissioned 2004

c_{N2}, c_{O2} < 0.01 ppm

Isotopically Pure "Protium" Target

1) Generate H₂ from deuterium-depleted water (c_d ~1 ppm)

Analysis of MuCap data collected in 2004

- Led to first physics result published July 2007
- Based on 1.6 10⁹ observed muon decay events
- Conditions:
 - -- Full muon tracking
 - -- Full electron tracking
 - -- CHUPS running (c_z ~ 10 ppb)
 - -- DC muon beam ~20 kHz
 - -- <u>No</u> isotopic purification column ($c_d \sim 1 \text{ ppm}$)
Impact Parameter Cuts

(also known as μ -e vertex cuts)

distance of closest approach of the e-track to the μ stop position.

Internal corrections to λ_{μ}^{-}

Source	Correction (s^{-1})	Uncertainty (s^{-1})
$Z > 1$ impurities $(\Delta \lambda_Z)$	-17.4	4.6
Deuterium $(\Delta \lambda_d)$	-12.1	1.8
μp Diffusion $(\Delta \lambda_k)$	-3.1	0.1
Unseen $\mu + p$ scatters $(\Delta \lambda_{\rm sc})$	0.0	3.0
μ stop definition ($\Delta \lambda_{\rm tr}$)	0.0	2.0
μ pileup veto inefficiency $(\Delta \lambda_{\kappa})$	0.0	3.0
Analysis methods $(\Delta \lambda_{Ana})$	0.0	5.0
Total	-32.6	± 8.4

(statistical uncertainty of λ_{μ}^{-1} : 12 s⁻¹)

The final Z > 1 correction $\Delta \lambda_Z$ is based on impurity-doped calibration data.

Lifetime deviation is linear with the Z>1 capture yield.

Some adjustments were made because calibration data with the main contaminant, oxygen (H_2O), were taken in a later running period (2006).

Internal corrections to λ_{μ}^{-}

Source	Correction (s^{-1})	Uncertainty (s^{-1})
$Z > 1$ impurities $(\Delta \lambda_Z)$	-17.4	4.6
Deuterium $(\Delta \lambda_d)$	-12.1	1.8
μp Diffusion $(\Delta \lambda_k)$	-3.1	0.1
Unseen $\mu + p$ scatters $(\Delta \lambda_{\rm sc})$	0.0	3.0
μ stop definition ($\Delta \lambda_{\rm tr}$)	0.0	2.0
μ pileup veto inefficiency $(\Delta \lambda_{\kappa})$	0.0	3.0
Analysis methods $(\Delta \lambda_{Ana})$	0.0	5.0
Total	-32.6	± 8.4

(statistical uncertainty of λ_{μ}^{-1} : 12 s⁻¹)

Residual deuterium content is accounted for by a zero-extrapolation procedure.

c_d Determination: Data Analysis Approach

c_D Monitoring: External Measurement

The "Data Analysis Approach" gives a consistent result: • 2004 Production Gas, $c_D = (0.0125 \pm 0.0010) \times (122 \text{ ppm D})$ $= 1.53 \pm 0.12 \text{ ppm}$

Consistency Checks

 lifetime vs. variations in parameters not expected to change the results

Lifetime vs eSC segment

Lifetime vs. Non-Overlapping Fiducial Volume Shell

Lifetime vs. Chronological Subdivisions

MuCap Λ_{S} from the μ^{-} lifetime λ_{μ}^{-}					
$\lambda_{\mu}^{-} = \lambda_{0} + \Lambda_{\mathrm{S}} + egin{matrix} \Delta\lambda_{p\mu p} \ \bigstar \end{pmatrix}$ molecular fo	ormation				
$\lambda_{\mu}^{+} + \Delta \lambda_{\mu p}$ μ^{+} decay rate bound-state effect					
		Uncertai	inty (s^{-1})		
V	Value (s^{-1})	Stat.	Syst.		
MuCap λ_{μ}^{-}	455849.1	12.4	8.4		
Molecular Formation (λ_{OF}) Correction	17.3		4.7		
Molecular Transitions (λ_{OP}) Correction	5.7		3.4		
Bound State Correction $(\Delta \lambda_{\mu p})$	12.3				
World Average λ_{μ}^{+}	455162.2	4.4			
MuCap $\Lambda_S{}^a$	722.2	13.6	10.6		

Averaged with UCB result gives

$$\Lambda_{\rm S}^{\rm MuCap} = 725.0 \pm 13.7_{\rm stat} \pm 10.7_{\rm syst} \ {\rm s}^{-1}$$

Λ_{S} Calculations and MuCap (2007) Result

MuCap agrees within ~1 σ with Λ_s theory

- MuCap 2007 result (with g_P to 15%) is consistent with theory.
- This is the first precise, unambiguous experimental determination of $g_{\rm P}$

Summary

- MuLan:
 - First G_F update in > 23 years - no surprise
 - Factor 10 additional improvement on the way (more events; WFDs)
- MuCap:
 - $\mbox{ First } g_P \mbox{ with non-} \\ \mbox{ controversial interpretation }$
 - Agrees with χ PT expectation
 - Factor 2.5 additional improvement on the way (more events; systematics studies)

"Calibrating the Sun" via Muon Capture on the Deuteron

Motivation for the MuSun Experiment:

• First precise measurement of basic Electroweak reaction in 2N system,

n

- Impact on fundamental astrophysics reactions (v's in SNO, pp fusion)
- Comparison to modern high-precision calculations

Extra Slides

Muon-On-Demand

- Single muon requirement (to prevent systematics from pile-up)
- limits accepted μ rate to ~ 7 kHz,
- while PSI beam can provide ~ 70 kHz

μCap Experimental Strategy

- Unambiguous interpretation
 - capture mostly from F=0 μ p state at 1% LH₂ density
- Lifetime method
 - $10^{10} \mu^- \rightarrow e\nu\nu$ decays - measure τ_{μ^-} to 10ppm $\rightarrow \Lambda_S = 1/\tau_{\mu^-} - 1/\tau_{\mu^+}$ to 1%

- Clean μ stop definition in active target (TPC) to avoid μZ capture, 10 ppm level
- Ultra-pure gas system and purity monitoring to avoid: $\mu p + Z \rightarrow \mu Z + p$, ~10 ppb impurities
- Isotopically pure "protium" to avoid $\mu p + d \rightarrow \mu d + p$, ~1 ppm deuterium

diffusion range ~cm

fulfill all requirements simultaneously unique μ Cap capabilities

MuCap Collaboration

V.A. Andreev, T.I. Banks, B. Besymjannykh, L. Bonnet, R.M. Carey, T.A. Case, D. Chitwood, S.M. Clayton, K.M. Crowe, P. Debevec, J. Deutsch, P.U. Dick, A. Dijksman, J. Egger, D. Fahrni, O. Fedorchenko, A.A. Fetisov, S.J. Freedman, V.A. Ganzha, T. Gorringe, J. Govaerts, F.E. Gray, F.J. Hartmann, D.W. Hertzog, M. Hildebrandt, A. Hofer, V.I. Jatsoura, P. Kammel, B. Kiburg, S. Knaak, P. Kravtsov, A.G. Krivshich, B. Lauss, M. Levchenko, E.M. Maev, O.E. Maev, R. McNabb, L. Meier, D. Michotte, F. Mulhauser, C.J.G. Onderwater, C.S. Özben, C. Petitjean, G.E. Petrov, R. Prieels, S. Sadetsky, G.N. Schapkin, R. Schmidt, G.G. Semenchuk, M. Soroka, V. Tichenko, V. Trofimov, A. Vasilyev, A.A. Vorobyov, M. Vznuzdaev, D. Webber, P. Winter, P. Zolnierzcuk

Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Paul Scherrer Institute (PSI), Villigen, Switzerland University of California, Berkeley (UCB and LBNL), USA University of Illinois at Urbana-Champaign (UIUC), USA Université Catholique de Louvain, Belgium TU München, Garching, Germany University of Kentucky, Lexington, USA Boston University, USA

Sensitivity of Λ_S to Form Factors

 $\frac{\partial \Lambda_S}{\partial g_X} \frac{g_X}{\Lambda_S}$ from Govaerts, Lucio-Martinez, Nucl. Phys. A 678 (2000) 110-146

$$g_{p} \text{ from } \Lambda_{S}^{MuCap} = 725.0 \pm 17.4 \text{ s}^{-1}$$

$$g_{p}^{MuCap} = g_{p}^{theory} + \frac{\partial g_{p}}{\partial \Lambda_{S}} (\Lambda_{S}^{MuCap} - \Lambda_{S}^{theory})$$
Average HBChPT calculations of Λ_{S} :
$$(687.4 \text{ s}^{-1} + 695 \text{ s}^{-1})/2 = 691.2 \text{ s}^{-1}$$
Apply new rad. correction (2.8%):
$$(1 + 0.028)691.2 \text{ s}^{-1} = 710.6 \text{ s}^{-1}$$

6

 $g_p^{MuCap} = 8.26 + (-0.065 \text{ s}) ((725.0 \pm 17.4 \text{ s}^{-1}) - (710.6 \text{ s}^{-1}))$ = 7.3 \pm 1.1 (MuCap 2007, Final)

Note: uncertainty in theory (~0.5%) not propagated.

μp Diffusion Effect

Lifetime vs. e-definition

Lifetime deviations $\Delta \lambda_Z$ due to Z > 1 impurities can be calculated.

Based on full kinetics solution: y_e(t)

$$\Delta \lambda_Z = \lambda_{1\rm st}(c_Z = 0) - \lambda_{1\rm st}(c_Z)$$

Impurity correction scales with Z > 1 capture yield.

 $\beta_z = \Delta \lambda_z / Y_z$ is similar for C, N, and O.

We can correct for impurities based on the observed Z > 1 capture yield, if we know the detection efficiency ϵ_z .

μ Cap Method: Clean μ Stop Definition

Each muon is tracked in a time projection chamber.

Tracking in the Time Projection Chamber

1) μ entrance, Bragg peak at stop.

2) ionization electrons drift to MWPC.

Electron Definition

- timing from scintillator (eSC)
- temporal and spatial coincidences with wire chamber planes: full 3D tracking

Gas impurities (Z > 1) are removed by a continuous H_2 ultra-purification system (CHUPS).

Commissioned 2004

c_{N2}, c_{O2} < 0.01 ppm

Axialvector Form Factor g_A

introduces 0.4% uncertainty to $\Lambda_{\rm S}$ (theory)
Muon decay gives us unique access to the electroweak scale

The muon decays only via the weak interaction

The V-A theory factorizes into a pure weak contribution, and non-weak corrections, essentially uncontaminated by hadronic uncertainties.

$$\frac{1}{\tau_{\mu^+}} = \frac{G_{\rm F}^2 m_{\mu}^5}{192\pi^3}$$

neutron (J. Nico, CIPANP 06)

$$dW \propto (g_V^2 + 3g_A^2)F(E_e)[1 + a\frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} + \vec{\sigma_n} \cdot (A\frac{\vec{p_e}}{E_e} + B\frac{\vec{p_{\nu}}}{E_{\nu}} + D\frac{\vec{p_e} \times \vec{p_{\nu}}}{E_e E_{\nu}})]$$

Jackson, Treiman, Wyld, Nucl. Phys. 4, 206 (1957)

Lifetime

$$au = rac{1}{f(1+\delta_R)} rac{K/ln2}{(1+\Delta_R^V)(g_V^2+3g_A^2)} = (885.7\pm0.8)\,\mathrm{s}$$

Electron-antineutrino asymmetry

$$a = \frac{1 - |\lambda|^2}{1 + 3|\lambda|^2} = (-0.103 \pm 0.004)$$

Spin-electron asymmetry

$$A = -2rac{|\lambda|^2 + |\lambda| cos \phi}{1 + 3|\lambda|^2} = (-0.1173 \pm 0.0013)$$

Coupling ratio

$$\lambda = \frac{|g_A|}{|g_V|} e^{i\phi} = (-1.2695 \pm 0.0029)$$

Spin-antineutrino asymmetry

$$B = 2\frac{|\lambda|^2 - |\lambda|\cos\phi}{1 + 3|\lambda|^2} = (0.983 \pm 0.004)$$

Triple correlation

$$D=2rac{|\lambda|sin\phi}{1+3|\lambda|^2}=(-4\pm 6) imes 10^{-4}$$
 PDG, 2005 update

neutron

