

Neutrino Telescopes: Agenda

- 10 years of progress with optical Cherenkov Detectors
- Diffuse flux limits and EG point flux constraints
- Extremely Energetic Neutrinos New Technologies Radio: ANITA and ARIANNA

Teraton -Petaton

PHOTONS: not deflected, but: reprocessed in sources, absorbed in IR (100 TeV), and CBR
PROTONS: deflection in magnetic fields, GZK cutoff
NEUTRINOS: not absorbed or deflected, hard to see

10 Years of Diffuse v Progress

Diffuse v-Fluxes << CR-Fluxes

Diffuse Flux: Limits and Models

GZK Model-Specific limits

Excluding AGN Model Predictions for Diffuse Flux

	Model	Source Type	Emission Type	Process	Normalization	Reference
σ						
ŭ	radio-quiet AGN ⁺	Seyfert/Quasar	core	Рγ	x-ray diffuse	[Stecker et al., 1991]
Ť	radio-quiet AGN ⁺	Seyfert/Quasar	core	рр	x-ray diffuse	[Nellen et al., 1993]
Ĭ	radio-loud AGN (B) [†]	Blazars	jets	Рγ	1 MeV γ -ray diffuse	[Mannheim, 1995]
\exists	γ -ray loud AGN ⁺	Blazars	jets	Рγ	GeV γ -ray source	[Protheroe, 1996]
<u>O</u>	AGN ⁺	Blazars	jets	Рγ	100 MeV γ -ray source	[Stecker and Salamon, 1996]
X	γ -ray loud AGN ⁺	Blazars	jets	Рγ	GeV γ -ray source	[Halzen and Zas, 1997]
ш	AGN ⁺	Blazars	jets	Рγ	100 MeV γ -ray source	[Mannheim et al., 2001]
	AGN ⁺	Blazars	jets	Рγ	CR's spectrum	[Mannheim et al., 2001]
	radio-loud AGN ⁺	FSRQ	jets	Рγ	radio source	[Becker et al., 2005]
	radio-loud AGN (A)	Blazars	jets	рγ	100 MeV γ -ray diffuse	[Mannheim, 1995]
5	AGN-LBL	Blazars	jets	Рγ	TeV γ -ray source	[Mücke et al., 2003]
	AGN-HBL	Blazars	jets	Рγ	CR's spectrum	[Mücke et al., 2003]
	radio-quiet AGN	Seyfert/Quasar	core	pp and p γ	UV/x-ray source	[Alvarez-Muniz et al., 2004]
	radio-loud AGN	FR-I	core	рр	TeV γ -ray source	[Anchordoqui et al., 2004]
	radio-quiet AGN	Seyfert/Quasar	core	Рγ	MeV γ -ray diffuse	[Stecker, 2005]
	radio-loud AGN	FR-II	jets	Рγ	radio source	[Becker et al., 2005]
	radio-loud AGN	FR-I	core	рр	TeV γ -ray source	[Halzen and O'Murchadha, 2008]

Normalization to x-ray or 1-1000 MeV γ 's overproduces neutrino flux

A. Silvestri 2008

10 Years of Point v Progress

Constraining EG Point Flux

- Based on sensible collection of suppositions:
 - 1. EG point sources exist to redshift z=1
 - 2. L_v constant, or power law luminosity distribution function
 - 3. Source emission described by power law energy spectrum, but details of spectrum not critical
- Number of resolvable sources, N_s, obtained once point source sensitivity is specified.

– In our case:

-
$$K_v^{\text{diff}}$$
, $dN/dE = K_v^{\text{diff}} E^{-2}$ diffuse flux

-
$$C_{point}$$
, $dN/dE = C_{point} E^{-2}$ point source sensitivity

$$N_{s} \simeq \frac{\sqrt{4\pi}}{3} \frac{1}{\sqrt{\ln(10)}} \frac{H_{0}}{c} \frac{K_{diff} \sqrt{L_{dec}}}{(C_{point})^{3/2}} \frac{1}{\xi}$$

First derived

by P. Lipari

EG Point Flux Constraint

EG Constraint Caveats

- Only applies to Extragalactic (EG) sources
- Not competitive for GRBs
- Does not apply to "unique" source
- Local nonuniformity in matter distribution does not substantially alter conclusions (Barwick, NIMA, 2009)
 - "Nearby" (<25 Mpc) sources possess rather small photon luminosities
 - Matter distribution at "Intermediate" distances within factor 2 of universal average

IceCube

When completed, may detect <1 cosmogenic v per year

Completion by 2011.

Quest for EHE neutrinos

New Technologies

Cosmogenic (or GZK) Neutrinos

Predictions are secure: $p + \gamma_{cmb} \rightarrow \Delta \rightarrow n + \pi^{+}$ $n \rightarrow lower energy protons$ $\pi \rightarrow \mu + \nu$

However, v-Flux Calculations depend on:

- 1. Elemental composition (p, Fe, mixed)
- 2. Cosmology (Λ =0.7)
- 3. Injection Spectra, $E^{-\gamma}$ and E_{max}
- 4. Evolution of sources with redshift, $(1+z)^m$
 - Star formation, QSO, GRB, little or no

HiResll

Auger 2007

x 2

20

19.5

log(E [eV])

GZK neutrino predictions

- Two significant developments
 - Auger confirms HiRes obs. of flux suppression, both 5σ
 - Auger reports angular correlation between CR and nearby matter (AGN?) - not observed by HiRes (APS08)
 - Strengthens idea that "Ordinary" AGN responsible for UHECR
 - Relatively well known evolution of source
 - Majority of CR must be protons, else B_{gal} would scramble directions by more than observed
- If Ang. Correlation confirmed, much (but not all!) of the GZK flux uncertainty disappears.

Why Big Detectors?

500 km

 ~ 0.02

- GZK v Flux, ϕ (E~10¹⁸ eV): 10 /km²/yr
- ν Interaction Length, λ:
- Event Rate/km³/yr = $[\phi/\lambda]$
- See about half the sky, $0.01/km^3/yr$
- Efficiency, livetime, nice if more than one

So GZK v detection requires > 100 km³ (aperture > 600 km³sr)

ANITA-1

The ANITA Collaboration

University of California, Irvine Irvine, California

> Ohio State University Columbus, Ohio

University of Kansas Lawrence, Kansas

Washington University in St. Louis

University of Delaware

Newark, Delaware

Washington University

in St.Louis

SLAC

UCIrvine KUKANSAS

St. Louis, KMissouri

University of California, Los Angeles Los Angeles, California

University of Hawaii at Manoa Honolulu, Hawaii

National Taiwan University Taipei, Taiwan

University College London London, England

Jet Propulsion Laboratory Pasadena, California

Stanford Linear Accelerator Center Menlo Park, CA

Stephen Hoover, APS April Meeting 2008

California Institute of Technology

Lets get to know ANITA

dependence confirmed

Calibration Signals

Pointing At Calibration Events

- Anthropogenic background \rightarrow Need good pointing!
- Pointing resolution $(\Delta \theta, \Delta \phi) \approx (0.25^\circ, 0.75^\circ)$

Reconstructed locations of calibration signal events

Modeling Surface Roughness

Important Caveat on Surface Studies

Distortion of time dependence, and consequently angular reconstruction and analysis efficiency are still unknown

Well Reconstruction Event Distribution

All events associated with known bases, camps, traverses or dominated by wrong (horizontal) polarization

No neutrino candidates!

EHE v limits

Blue= proton only models Green= mixed comp.

ANITA-2008 [arXiv:0812.2715v1] ANITA-2 sensitivity improves by ~2-3

Fluxes are for sum of all ν flavors

EHE Neutrinos Explore Higher Dimensions

(Anchordoqui, et al, hep-ph/0307228)

ANITA Can Constrain σ_{vN} ! (F. Wu, ICRC 07, APS08)

New Techniques to Observe Cosmogenic Neutrinos

	Current	Under
		Development
Radio	RICE, ANITA	ARIANNA AURA, IceRay, SALSA
Air Shower	HiRes, Auger	TA, Auger N, OWL
Acoustic		SPATS, AMADEUS

Camping at Moore's Bay Site

ARIANNA Site Studies

Barwick, ICRC 07

Amazing fidelity of reflected pulse from sea-water bottom -behaves as nearly flawless mirror

1-way attenuation length, averaged over depth and temperature

And Radio Quiet!

ARIANNA Visualization

ARIANNA Sensitivity

Neutrino Cross-Section

Protostation Deployed 12/26/06

Outlook

- Requisite tools to inaugurate multi-messenger astronomy are available -> IceCube, Mediterranean efforts continue to improve this technique.
 - Flux from EG sources may be low -> galactic sources very important
- To probe the neutrino fluxes and physics at highest energies, new techniques are being developed based on radio cherenkov, air shower and acoustic detection.
- ANITA extends search volume to 10⁶ km³
 - Launched from McMurdo Dec 15, 2006, and remained aloft 35 day
 - Results recently released, 2nd flight completed in Jan 09
- ARIANNA spans the impending energy gap
 - Ice studies in Nov' 06 astonishingly good, but not the only contender (SALSA, AURA/IceRay, Auger, acoustic detection)

UHE analysis sensitive over the southern sky $\phi_v \sim E^{-2}$

• A_{eff} as a function of declination δ and neutrino energy E_{ν}

Air Shower vs Ice Shower (time profiles quite different!)

