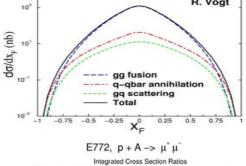
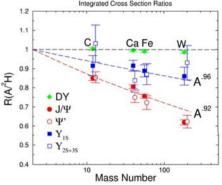

Nuclear Physics with p-p, p-A and A-A Collisions in P-25 at RHIC & FNAL


- Production issues & spin:
 - Parton distribution functions
 - Production mechanisms for heavy quarks, angular distributions, total cross sections
 - Spin the spin crises & dbar/ubar via W's
- Cold nuclear matter effects:
 - Modification of structure functions, e.g. shadowing
 - Incident parton energy loss, multiple scattering (Cronin effect)
 - Absorption of heavy-quark resonances and contributions from feed-down
 - closed & open-charm comparisons
 - Critical baseline for A-A studies


• Hot dense matter in nucleus-nucleus collsions

- sQGP deconfined partonic matter
- Color screening for heavy-q bound states
- Energy loss of partons leaving the dense region
- Modification of jet momenta and their fragmentation or cone distributions and back-toback correlations

- Variation wrt reaction plane

RHIC Spin Physics

How does the proton get its spin?

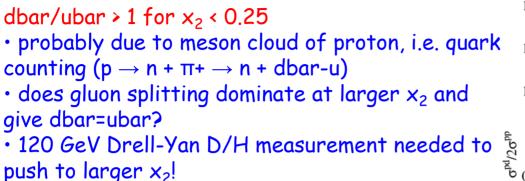
- On average, quarks account for only ~20% of the proton's spin ("spin crises")
- how much do the gluons contribute?
- is there significant orbital angular momentum?

Are the sea antiquarks polarized?

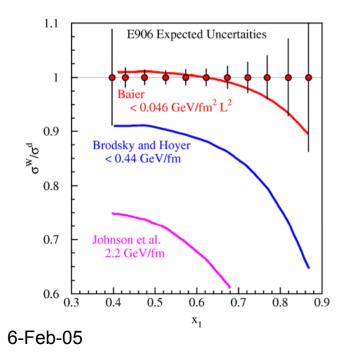
- parity-violating spin asymmetries in W[±] production are sensitive to quark and antiquark polarization.
- How does the transverse spin structure (transversity) compare to the longitudinal spin structure?

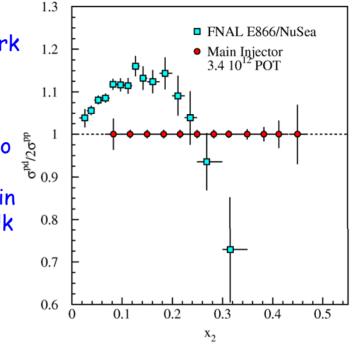
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \Delta L_{G+q}$$

$$\Delta\Sigma = \Delta u + \Delta d + \Delta s = 0.31 \pm 0.04$$


$$\Delta s = -0.10 \pm 0.02$$

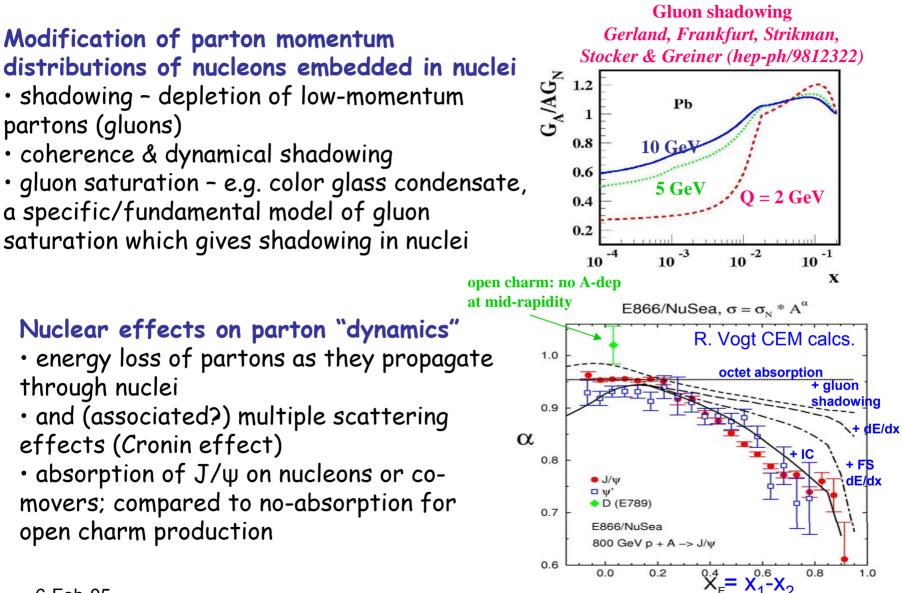
$$\int_{GRSV(LO)}^{1} = \frac{GSA(LO)}{GRSV(LO) \text{ std. and val.}}$$


$$\int_{O2}^{0} = \frac{GRSV(LO)}{O} = \frac{GRSV(LO)}{10^{-2}} = \frac{10^{-1}}{x_G}$$


LANL experimental approach: heavy quarks – sensitivity to gluons

<u>FNAL E906 – flavor asymmetry of the nucleon to larger x</u> <u>& quark energy loss in nuclei</u>

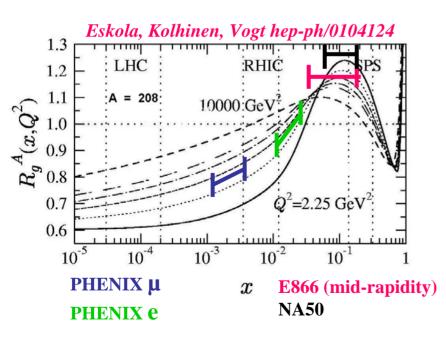
 polarized p-p collisions at RHIC can explore spin structure of dbar/ubar with W's - see Ming's talk



At 800 GeV, the nuclear dependence of Drell-Yan on nuclear targets could not unambiguously separate shadowing and dE/dx effects at low x

 for 120 GeV p-A Drell-Yan only quark dE/dx remains and can be isolated

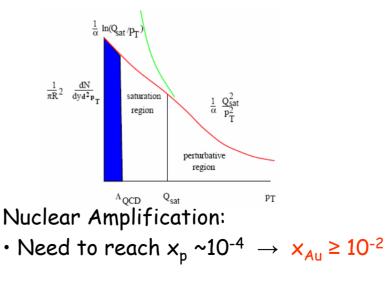
Nuclear modification of parton level structure & dynamics

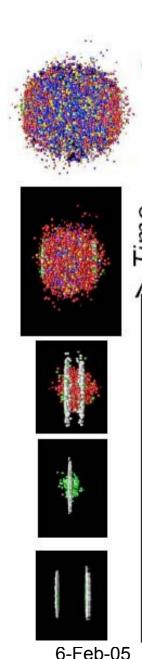

6-Feb-05

Gluon Shadowing

• Shadowing of gluons \rightarrow depletion of the small x gluons

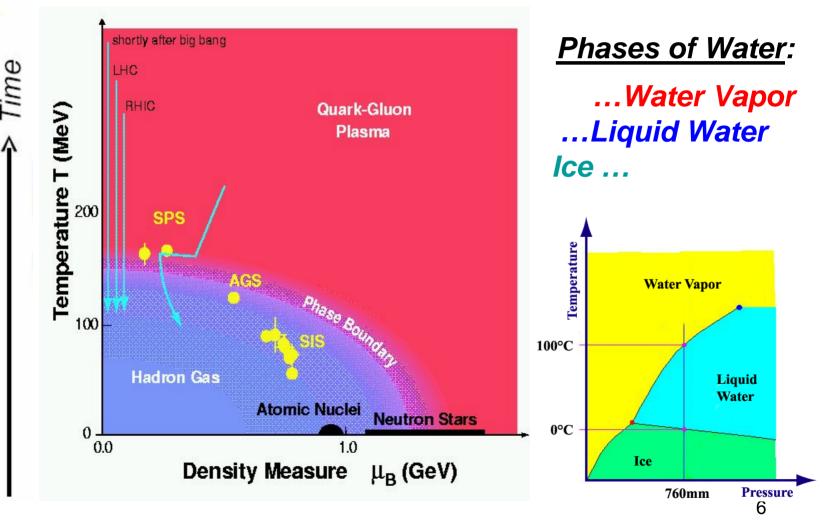
• Very low momentum fraction partons have large size & number density, overlap with neighbors, and fuse; thus enhancing the population at higher momenta at the expense of lower momenta


• Or alternate but equivalent picture: coherent scattering resulting in destructive interference for coherence lengths longer than the typical intra-nucleon distance

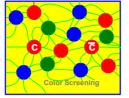


Color glass Condesate (CGC):

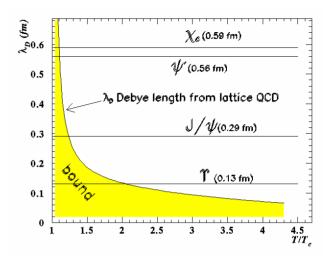
 Gluons saturate and the distribution stops growing.


 Recently, a new way to look at this phenomena (McLerran, Venugopalan et al.)

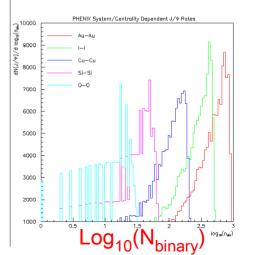
What is a Quark Gluon Plasma?


<u>Phases of Matter</u>: **Quarks and gluons become deconfined** as the temperature and/or density is increased through and beyond a phase boundary

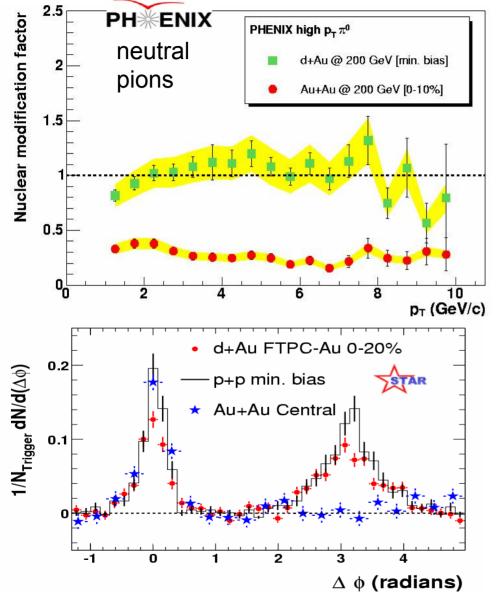
<u>AuAu J/ψ's - Quark Gluon Plasma (QGP) signature?</u>


 Debye screening predicted to destroy
 J/ψ's in a QGP

NA50


• Different states "melt" at different temperatures due to different binding energies.

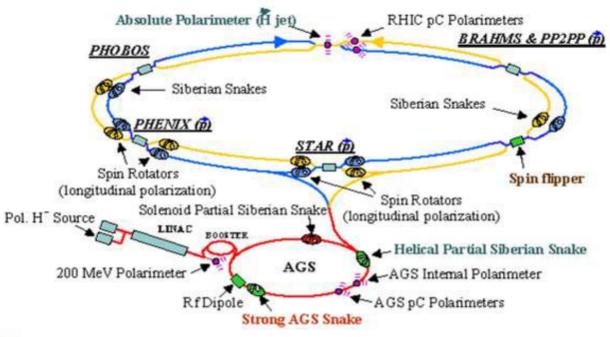
• but recent charm recombination models might instead cause an enhancement?



Grandchamp, Rapp, Absorption curve rescaled to 158 GeV with: LO calculation for DY4.2-7.0 Brown hep-ph/0403204 Schuler parametrization for J/ ψ J/Ψ B_edN/dy(y=0)/N_{coll} [x10⁻⁵] 0.1 0.1 0.1 0.1 0.1 0.1 PHENIX $\sigma_{abs} = 4.3 \pm 0.3$ mb nuclear abs. direct regenerated total DY rescaling with MRS 43 Au-Au DY rescaling with GRV L 150 √s = 200 AGeV 100 Pb - Pb 2000 Pb - Pb 1998 50 0 50 100 0 150 200 250 300 350 0 2060 80 100120 140 40Ν part E_T (GeV)

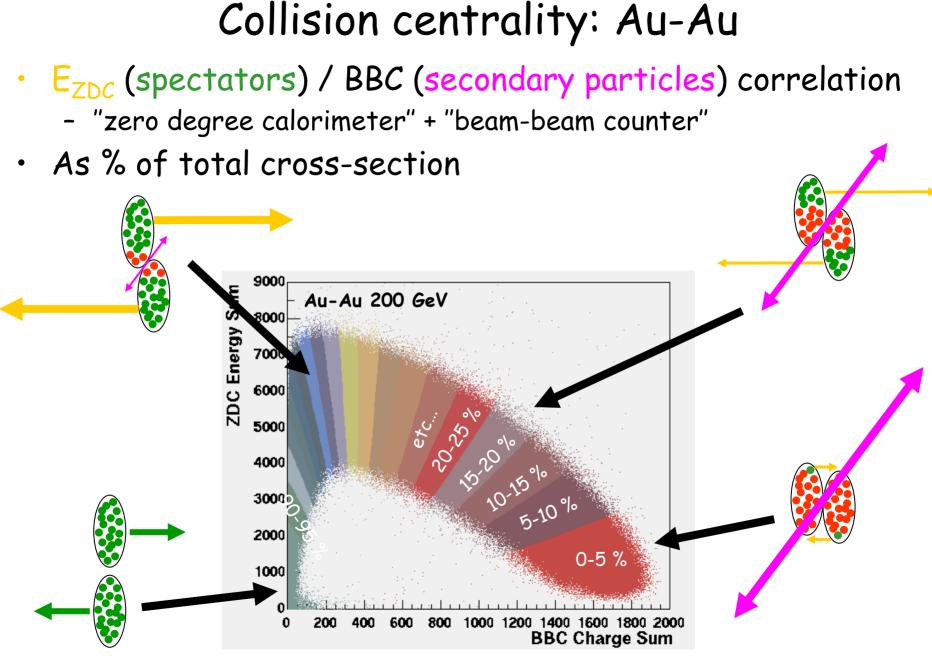
Lighter species collisions to explore range of energy densities

Jet Quenching

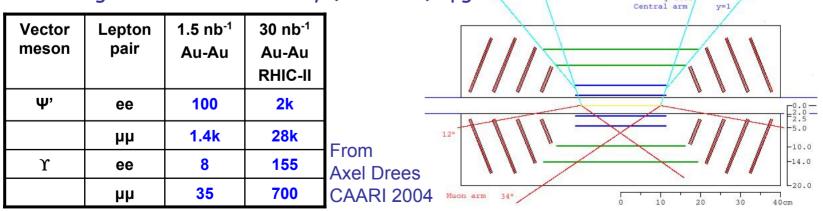


- d+Au @ RHIC shows "Cronin" p_T broadening as seen in lower \sqrt{s} p+A
- Suppression in central Au+Au
 due to final-state effects ->
 15x normal nuclear density
- back-to-back di-hadron
 correlations are very similar in
 p+p and d+Au
- but strongly suppressed in central Au+Au collisions at 200 GeV

RHIC pp accelerator complex



- Installed and commissioned during run 4
- Planned to be commissioned during run 5
- Planned to be installed and commissioned in run 5


The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory collides all types of ions (Au+Au, d+Au, and Cu+Cu planned for run 5) at CM energies $20 \le \sqrt{s_{NN}} \le 200$ GeV and spin polarized (transverse or longitudinal) protons at CM energies up to \sqrt{s} =500 GeV

 \Rightarrow probe QCD states of matter and spin structure of proton 6-Feb-05 9

Some comments about the future at RHIC/PHENIX

- Present p-p in "Run5" is supposed to bring ~4.1 pb⁻¹
 - would give ~13k J/ ψ , 400 ψ' , 6 Υ (in 2 muon arms) & ~5k J/ $\psi \rightarrow e^+e^-$
 - compared to ~0.2 pb^1 in Run3 with ~450 $J/\psi{\rightarrow}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
 - and ~0.2 pb⁻¹ in Run4 with ~850 J/ $\psi \rightarrow \mu^+\mu^-$ (?)
- A new higher luminosity d-Au run (by 2009?) needed
 - projected to give ~39 nb⁻¹
 - which would give ~50k $J/\psi \rightarrow \mu^+\mu^-$ & ~12k $J/\psi \rightarrow e+e-$
 - compared to ~1.5 nb⁻¹ in "Run3" which gave ~1.7k J/ $\psi \rightarrow \mu^+\mu^-$ (~400 J/ $\psi \rightarrow e+e-$)
- Muon arm performance also is improved:
 - better efficiency with reduced beam backgrounds, by as much as a factor of two (see Run4 vrs Run3 pp above)
 - \bullet better mass resolution σ ~ 200 MeV \rightarrow 150 MeV or better
- Silicon vertex upgrade to PHENIX will improve mass resolution further
- $\boldsymbol{\cdot}\ \Upsilon$ is tough without a luminosity (RHIC-II) upgrade

y=0.35

Other Physics Goals for the Future

- Some future LANL physics focuses:
 - anomolous suppression or enhancement of J/Psi's in central Au-Au collisions?
 - $\boldsymbol{\cdot}$ angular distibutions for J/ψ to try to determine production mechanism

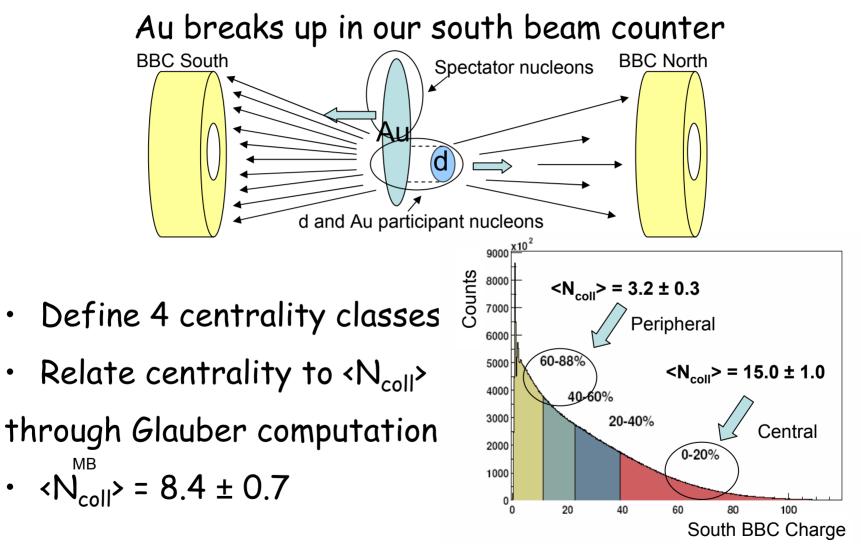
 \cdot J/ ψ and other signals vrs reaction plane, e.g. to better isolate final-state effects

- ψ' as a cleaner physics window into shadowing and other nuclear effects (the ψ' , unlike the $J/\psi,$ has no feeddown from higher mass resonances)
- $\boldsymbol{\cdot}$ open beauty from single muons at higher \boldsymbol{p}_{T}
- $\boldsymbol{\cdot} \Upsilon$ production and its nuclear dependence
- more exclusive studies of heavy-quark production using a silicon vertex upgrade
- Most of these require higher luminosity running for AA or dAu along with similar pp runs for comparison.
 - planning and physics justification for RHIC-II

Backup

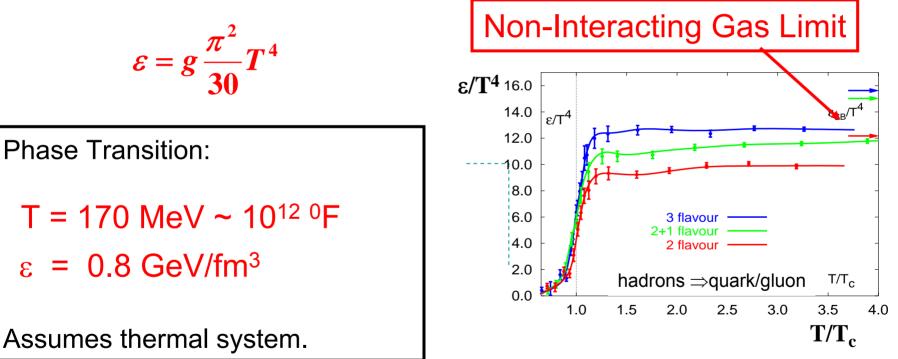
Current PHENIX Run Request

- An extensive program of luminosity and polarization development for p+p, with the goal of the earliest practicable measurement of DG
- Light-ion running, to investigate dependence on system size
- A reduced energy run, again with emphasis on obtaining highest possible integrated luminosity


 High integrated luminosities achieved via minimal variations in species and energies, as per

CAD guidance

Table 2: The PHENIX Beam Use Proposal for 31 cryo weeks in Run-5, and 27 cryo weeks in latter years.


RUN	SPECIES	$\sqrt{s_{NN}}$	PHYSICS	$\int \mathcal{L} dt$	p+p
		(GeV)	WEEKS	(delivered)	$\mathbf{Equivalent}$
5	Cu+Cu	200	10	$7.0 \ {\rm nb}^{-1}$	27.6 pb^{-1}
	p+p	200	11	$13.1 \ \mathrm{pb}^{-1}$	$13.1 \ {\rm pb}^{-1}$
6	Au+Au	62.4	9	$111 \ \mu b^{-1}$	$4.3 \ {\rm pb}^{-1}$
	p+p	200	8	$15.0 \ {\rm pb}^{-1}$	$15.0 \ {\rm pb}^{-1}$
7	p+p	200	20	122 pb^{-1}	122 pb^{-1}
8	Au+Au	200	20	$4140 \ \mu b^{-1}$	161 pb^{-1}
9	p+p	500	20	359 pb^{-1}	359 pb^{-1}
10	d+Au	200	20	$91.6 \ {\rm nb}^{-1}$	$36 \ {\rm pb}^{-1}$

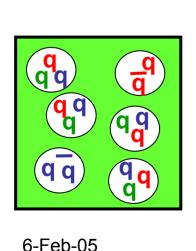
Centrality in d-Au

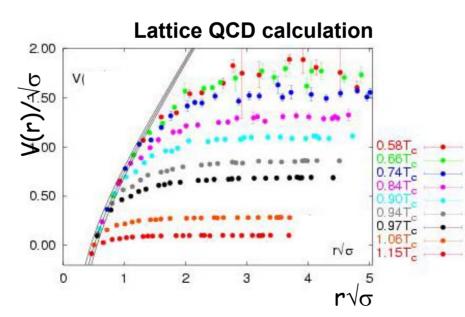
Quark Gluon Plasma

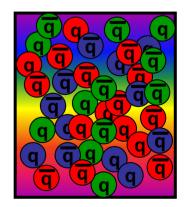
Lattice QCD predicts a phase transition to a Quark Gluon Plasma at high temperature where the number of degrees of freedom is significantly increased.

Expect a "weakly" interacting gas of quarks and gluons

Deconfinement


QCD in Vacuum


- linear increase with distance from color charge
- strong attractive force


<u>confinement of quarks</u> to hadrons baryons (qqq) and mesons (qq)

QCD in dense and hot matter

- screening of color charges
- potential vanishes for large distance scales
- restoration of approximate chiral symmetry
- deconfinement of quarks and gluons !

