Robust Low-pt Charm \(D \rightarrow eX\)

1) remove Dalitz e, DCA cut
2) or fit DCA distribution folded with resolution

\[\Rightarrow\] charm yield low \(p_{T,D}\)

\[\Rightarrow\] reduce systematic error of existing charm result

PRL 88:192303, 2002
High-pt Charm

- High-pt heavy-quarks may lose less energy in the plasma
 - Kharzeev et al. predict reduced gluon Bremsstrahlung
- High-pt charm not possible via semi-leptonic decay
 - dominated by beauty decays
Open Charm via Specific Channels

- Observe specific D-mesons,
 - $D^0 \Rightarrow K^- \pi^+ (4\%)$, $D^+ \Rightarrow K^- \pi^+ \pi^+ (9\%)$, …
 - reconstruct invariant mass of D,
 - extract signal over background etc.
 - measure pt spectra, yields of D^0, D^+, D^-
 » high-pt helps in multiple-scattering and acceptance

- Problems with simulation in LOI, $D^+ \Rightarrow K^- \pi^+ \pi^+$
 - $B=0$, straight-line DCA
 - no Phenix acceptance, perfect PID…..

- Summer ’03 (Hua Pei) restart
 - not as much progress as we would like…..
Strategy Options

1) Full B-field in PISA to get π, K, acceptance, decays
 - Kalman tracker using Si hits \Rightarrow DCA
 » EDA summer ’04

2) B=0
 - Fit Si hits with a line, calculate DCA to collision
 - use fast filter to see if π, K in PHENIX acceptance

3) Full B-field in PISA to get π, K, acceptance, decays
 - Fit Si hits with a circle
 » assumes ~ uniform B-field in vtx region
 - calculate DCA of circular track to collision (c.f. above)
Work Plan (done = ✓)

✓ <ncoll> * D from pythia, π, K from min.bias Au+Au EXODUS
✓ pt > 1 GeV/c on π, K (primary and daughters)
 – selects > 2 GeV/c D’s
✓ Kaon into acceptance of TOF or aerogel
 – goal of PID cut is to reduce S/B
 § S/B vs DCA cut
 § Use Tony’s #events collected in a Au+Au run
 – significance of signal over fluctuating background

\[
\text{significance} = \frac{S}{\sqrt{(\sigma_S)^2 + (\sigma_B)^2}} = \frac{S}{\sqrt{B}}
\]

– increases with sqrt(nevents)
– plot significance vs DCA cut
backups
aerogel

<table>
<thead>
<tr>
<th>Momentum [GeV/c]</th>
<th>0.5</th>
<th>2.5</th>
<th>3.5</th>
<th>4.5</th>
<th>5.5</th>
<th>6.5</th>
<th>7.5</th>
<th>~10.5 (Momentum Limit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RICH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AEROGEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOF</td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AEROGEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n RICH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOF (proton) AEROGEL</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AEROGEL (n RICH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TOF</td>
</tr>
</tbody>
</table>

PHENIX Detector

- Particle tracks
- z-direction
- r-direction
- Beam line
- West Beam View East
- ACC
- RICH
- BB
- MVD
- PC3
- PC2
- PbSc
- PbGl
Bz values in field map vary < 1%
(histogram of points in map)

-12 < z < 12
and
4 < r < 10 cm
A review of fast circle and helix fitting
R. Fruhwirth

http://acat02.sinp.msu.ru/presentations/fruehwirth/talk.pdf
High-pt: Flavor Dependence Energy-loss

- @ higher pt, e and μ decay channels dominated by beauty
 - hadronic decay for high-pt charm spectra
 ▶ multiple-scattering, small acceptance less problematic

\[D^+ \rightarrow K^- \pi^+ \pi^+ \text{ (BR 9\%)} \]

\[p+p \text{ 30k/year} \]

\[\text{Au+Au 10K/year} \]

Au+Au 4 blue-book luminosity, 50 full days/year, yield Au+Au = AA*(yield p+p)
electrons from non-photonic sources in min. bias Au+Au collisions

PHENIX preliminary

\[\left(\frac{e^+ + e^-}{2} \right) @ \sqrt{s_{NN}} = 200 \text{ GeV} \]

\[\left(\frac{e^+ + e^-}{2} \right) @ \sqrt{s_{NN}} = 130 \text{ GeV} \]

(PHENIX: PRL 88(2002)192303)

\[\text{sys. error @ } \sqrt{s_{NN}} = 200 \text{ GeV} \]

PYTHIA: pp @ \sqrt{s} = 130/200 \text{ GeV}

\[\left(\frac{e^+ + e^-}{2} \right) \text{ from charm with binary scaling from pp to Au+Au} \]
Electron pt Spectra from D

electrons from D pt=4.0-4.4 GeV
electrons from D pt=2.4-2.8 GeV
electrons from D pt=0.8-1.2 GeV
Signal/background of invariant mass peak
(2002 plots)

\[
\frac{S}{B} = \frac{(D^0 \times \text{Branching Ratio} \times \text{Survive Pt cut})}{(K^- \times \text{Survive Pt cut})(\pi^+ \times \text{Survive Pt cut})} \times \text{rejection}
\]

Kapton beam-pipe
Be beam-pipe

\[\frac{S}{B} \sim 0.1\% \text{ for dca cut } = 150\mu\text{m}\]

Assumed per event
1 \(D^0\), 150 \(K^-\), 1000 \(\pi^+\)
DCA of K/Pion from D0 comparing with DCA of primary K/Pion (no pt cut)