
1

PHENIX MUON DAQ SYSTEM

 (CODA)
Elham Nikanjam

email: nikanjam@p25hp.lanl.gov

A. Introduction:

The main goal for setting up a DAQ system is to be able to read raw data from a CAMAC module, graph it,
analyze it, and finally be able to store it for further study. This article is a detailed guide on how to set up a
DAQ system and be able to run it. For this purpose, an overview of the system is presented and detailed
descriptions follow. Note that there are different ways of setting up a CODA(CEBAF On-line Data
Acquisition) DAQ system. The system presented in this article is the one currently being used at Los Alamos
National Laboratory for the Phenix muon project.

B. General view of the system:

A schematic of the DAQ hardware is shown in this figure.

C. Hardware:

To set up a CODA DAQ system, the hardware modules listed in table 1 are required. The core of the system is
composed of a UNIX workstation, a VME crate which contains at least a microprocessor and a VME CAMAC
Branch Driver, and (if you want to read out CAMAC electronics), a CAMAC crate with a CAMAC crate
controller.

Table 1: Hardware

2

requirements

VME micro processor CAMAC crate
controller

VME-CAMAC branch
driver

CAMAC crate

VME crate UNIX
workstation

Table 1: A brief list of hardware requirements and their specifications are shown in the this table.

1. Setting up the hardware:

The VME CAMAC branch driver that sits in the VME crate is connected to the CAMAC crate controller in the
CAMAC crate through a branch driver cable. Table 2 lists the microprocessors that can be used with the
CODA system. The PHENIX Muon DAQ uses the MVME 162-13 microprocessor. Note that Jumpers on the
module should be in a specific position so that the microprocessor can work with CODA (see figure 2). The
microprocessor is connected to the UNIX workstation through the ethernet. The workstation contains
Vxworks and CODA application software through which we can talk to the VME microprocessor. It also
contains CAMAC codes to read the CAMAC modules and analyzer programs. Vxworks is a multi-tasking
real-time operating system that will boot up into the VME microprocessor.

Table2:
microprocessors

MVME 167

MVME 162

 Table 2: Microprocessors that can be used with CODA are listed in this table.

2. Trigger:

The trigger is an electronic signal resulting from external electronic logic that defines the occurrence of a
physics event for which we want to accumulate data from the CAMAC modules. In the CES branch driver the
trigger should be a NIM signal going into the INT4 on the branch driver with minimum duration of 50 nano
seconds. The trigger should be delayed long enough so that the CAMAC modules have time to convert before
being read.

D. Software:

1. Software required for microprocessor:

3

On the UNIX workstation two files need to be modified to boot the VME microprocessor. These are .rhosts
that resides in your root directory and the bootest file that is referred to by the microprocessor. The .rhosts file
allows the microprocessor to remotely login to the UNIX workstation without requiring a password. The
name and/or IP address of the microprocessor must be added to this file (see appendix 1). An example of a
bootest file is shown in the appendix 2. The name and IP address of the UNIX workstation must be put in
this file also.

Table 3: Files to be
edited

.rhosts .cshrc

bootest rcNetwo
rk

*.crl rcRunTy
pes

analyzer files *.config

Table 3: This table lists all the files that need to be

edited in order to setup and run a DAQ system.

2. Setting up the environment:

A complete list of environment variables is stored in a file called CODA_setup. After this file is edited to
correspond to your particular system, it should be sourced in the .cshrc file. Examples of these two files are
shown in the appendix 3. Note that there should be no commands in the .cshrc or .login file that writes to the
screen, or you will get a Bus error when the VME microprocessor tries to log into the workstation to get
Vxworks (and ..cshrc and .login are executed).

3. CAMAC and Analyzer Files:

There are a few more files that have to be edited before running CODA (note table 3). The *.crl file contains
the CAMAC commands to be executed during data acquisition and uses a CODA specific format. Other
FORTRAN files are used as analyzer programs. When CODA is run, an x-window will be displayed through
which all the processes can be controlled. Different options can be chosen by clicking on the proper buttons.
One of the CODA windows is shown below.

For each button on this window, there is a set of commands in the *.crl file that will be executed when that
button is chosen. For example if prestart button is chosen, all the commands in the prestart section of *.crl
will be executed. An analyzer file containing different subroutines is also run when CODA is running.
Clicking on different buttons, activate the related subroutines. Userprestart is an example of one of the
subroutines. Table 4 shows the relationship between the buttons on the CODA window, sections of the *.crl
file, and the analyzer files' subroutines.

CODA button down load prestart end pause go auto done

4

*.crl section down load prestart end pause go trigger done

analyzer subroutine usr-download usr-prestart usr-end usr-pause usr-go usr-event usr- dump

Table 4: This table lists some of the DAQ system buttons and the correspondence sections of *.crl and
analyzer files. First column lists the source of comparison. Second row shows the related *.crl sections and

the third row lists the related subroutines in an analyzer file.

0 a. The *.crl file:
 This file holds the CAMAC codes for the system and it is used to make the CODA “event builder”. An
example of this file is shown in appendix 5. Refer to appendix C of the CODA manual for the definition of
any specific commands. Some of these commands are derivatives of the cnaf command. For example

write kkk into BRANCH,CRATE1,10,A1,F16

will write data word kkk into the module present in slot 10 and crate 1.

After this file is edited you can compile it using the following command:

makelist file-name 5.1

for example if your file name is camac.crl, give this command:

makelist camac.crl 5.1

Before moving on to the next step, check to make sure the file camac.o has been created. You will need this
file later on in the process.

1 b. The analyzer files:
The second file you need is a FORTRAN file which reads in the data, stores it and/or analyzes it. Note that
the sections here should correspond to the sections in the *.crl file. Note the example in the appendix 6. You
can compile this file using the following command:

CODAf77 file-name [other file names]

Example:

CODAf77 ebana_test

2 3. The Network files:
After these two files are ready, you have to let CODA know where they are located. To do this, edit the
following files.

DAQ/rcDatabase/rcNetwork

DAQ/rcDatabase/physics.config

Replace the name of the *.crl and FORTRAN file with yours.

The rcNetwork file lists all the possible event builders and analyzers in the system. The physics.config file
specifies which event builder and analyzer to use for running physics. Each application is called a RunType
and should be specified in the network files. To create various RunTypes, follow these directions:

a. Choose a name for the RunType and include it in the file "rcRunTypes". CODA refers to this file for a
list of possible RunTypes. Increment the number in front of the last RunType name for this file (see

5

appendix 9). For example if the last RunType is “wangdata 5”, your RunType will be “your
RunType name 6”. These numbers determine only the order in which the RunType names appear in
the “options” table.

b. For running each RunType, CODA needs to know which event builder (EB), analyzer (ANA) and
readout controller (ROC) to use. Create a *.config file and specify this information. For example for
physics RunType (appendix 8) we have:

ROC0 /usr1/muondaq/daq/run/second.o

EBP

ANAP /usr1/muondaq/daq/run/ebana_test.log

In this example second.o is a *.crl executable file. EBP and ANAP are just arbitrary names. For us, P
represents physics RunType. These names are referred to in the next section.

c. You need to tell CODA where to look for event builder (EB) and analyzer (ANA) files. Open the file
“rcNetwork”. Here is an example of what you should add to this file:

Name Num Type Host BootScript

!---- --- ---- ---- ---------- -----------------

EBP 2 EB $NODE $CODA_BIN/coda_activate -p /usr1/muondaq/daq/run/ebana_test

ANAP 3 ANA $NODE $CODA_BIN/coda_activate -p /usr1/muondaq/daq/run/ebana_test

Note that the names EBP and ANAP are used here. The numbers 2 and 3 refer to event builder and analyzer
and not to the listing numbers in the RunType file.

E. Running CODA:

At this stage the system is ready and you can run CODA. Type in RunControl at the prompt and enter. A
window will appear. Click on CONFIGURE. The next window will ask you for the RunType. Choose one
and click on OK. Down load the file you have chosen by clicking DOWNLOAD and begin data acquisition by
choosing AUTOSTART. If the event number at the bottom right corner of the screen is changing, that means
data is being collected.

Depending on the commands in the FORTRAN file, data can be stored in a regular file, ntuple file (for
histograms), or both. By adding a print command to the FORTRAN file, data can be looked at while they are
being collected. In that case, the FORTRAN file should be started before CODA starts in some other window
by typing ebana (if your analyzer is called ebana).

6

The FORTRAN program will end automatically when you exit CODA. Note that every time you start up the
CODA, a new output file is created. For this reason, you need to save this file under some other name before
collecting more data.

7

Figure 2:

The branch driver jumper settings are shown in this figure.

J1: Vector Number for Interrupt Level 4

 0 1 2 3 4 5 6 7

X X X X

X X X X

J2: Vector Number for Interrupt Level 2

 0 1 2 3 4 5 6 7

X X X X

X X X X

J3: Time-out selection - variable between 2 micro seconds and 134 seconds

 A B C D E

X X X X

X X X X

J4, J5, J6, J7 AND J8: Front panel level select plus ACK

J4: B A

X X

J5: B A

X X

J6:

J7:

X X
J8:

8

9

Appendix 1 : An example of .rhosts file

roc-muon.lanl.gov

128.165.86.79

Appendix 2: An example of bootest file

hostAdd "mudaq.lanl.gov", "128.165.86.74"

hostAdd "mudaq", "128.165.86.74"

< ~/boot/mybootsc

< $CODA/VXWORKS68K51/etc/boot040

cd "$CODA/CES"

ld < camacTest.o

ld < davesTest.o

Appendix 3: An example of CODA_setup file

#!/bin/csh

echo ' .CODA_setup executing...'

#

File:

$CODAHOME/.setup

#

Description:

Setup file for CODA

#

Author:

Chip Watson

CEBAF Data Acquisition Group

Modified by Tom Kozlowski (LANL) 9-jun-95

added GCC_EXEC_PREFIX 14 dec 95 Hubert van Hecke

10

Set up CODA specific environment variables

 setenv CODA /coda-v1.4

 setenv OSTYPE `uname|sed 's/-/_/'`

setenv RCDATABASE $CODA/$OSTYPE/examples/rcDatabase

 setenv RCDATABASE ~/daq/rcDatabase

 setenv RCDEFAULTS $RCDATABASE/noDV

 setenv CODA_BIN $CODA/$OSTYPE/bin

 setenv CODA_LIB $CODA/$OSTYPE/lib

 setenv GCC_EXEC_PREFIX \

 /vxworks/dist-5.1.1/gnu/hp9700.68k/lib/gcc-lib/

 alias RunControl "rcLock"

added this from .login; This file is executed from .cshrc, and therefore

gets done also for spawned processes, where .login does NOT get done.

 setenv LIBVER pro

 setenv CERN_ROOT /cern/$LIBVER

JPSullivan added cernlib to this October 23, 1992

set path=(/bin /usr/bin /usr/contrib/bin /usr/local/bin /usr/bin/X11 \

 $CERN_ROOT/bin /usr/local/bin /cern/pro/bin \

 /dd/v2.5/bin/HP-UX .)

set path = ($path $CODA_BIN /vxworks/dist-5.1.1/gnu/hp9700.68k/bin)

Define host environment variables

 if (-e ../scripts/hosts) source ../scripts/hosts

Appendix 4: An example of .cshrc file

#

set notify

setenv CODA /coda-v1.4

 source ~/.coda_setup

 alias trigger ~/camac/cam01

 alias single_pulse ~/camac/single_pulse

11

 alias clearI 'cnaf 128.165.86.79 1 30 9 24'

source ~/.coda_setup

Appendix 5: An example of a *.crl file

This file contains all the CAMAC codes for the system. Each section of the file is activated when the proper
button of the CODA window is hit. For example commands for clearing the ADC are executed when the
prestart button is activated. Collecting data takes place when trigger is activated.

! this is file ~/coda/run/test_camlist.crl

!---------------------------------------!------------------

camac readout ! camac hardware will be used

!polling ! (default is interrupt)

!---------------------------------------!-----------------------------

 BRANCH = 0

 CRATE = 1

 NIM_IN = 21 ! nim in

 OUTREG = 12 !Output registe

 LECROY4302 = 20

 SLOT26 = 26

 MAIN = 1 ! these are all the

 SLOT5 = 5 ! modules that we

 SLOT9 = 9 ! are trying to read.

 SLOT13 = 13 !

 SLOT14 = 14 !

 qqq = 64

 ggg = 16385

 A0 = 0

 A1 = 1

 F0 = 0

 F2 = 2

 F9 = 9

 F10 = 10

 F16 = 16

 F17 = 17

 F26 = 26

12

 F24 = 24

 nwords = 70

 yyy = 49152

 ! 64 data + 6 headers, trailers

 variable nread, zero, one, three, testvar, channel, slot,xxx, mmm, kkk

!---------------------------------------!-----------------------------

begin download

 log inform "TEST_CAMLIST:: nothing to download \n"

end download

!---------------------------------------!-----------------------------

begin prestart

 log inform "TEST_CAMLIST:: prestarting - reset camac crate \n"

 reset crate 0

 clear CRATE inhibit 1

 control BRANCH,CRATE,30,9,24

mmm = qqq

 write mmm into BRANCH,CRATE,17,A0,F16 ! declare
LAM location:

 control BRANCH,CRATE,1,A0,F9

 control BRANCH,CRATE,5,A0,F9

 control BRANCH,CRATE,10,A0,F9

 control BRANCH,CRATE,13,A0,F9

 control BRANCH,CRATE,14,A0,F9

 kkk = ggg

 write kkk into BRANCH,CRATE,1,A0,F16

 kkk = kkk + 4

 write kkk into BRANCH,CRATE,5,A0,F16

 kkk = kkk + 5

 write kkk into BRANCH,CRATE,10,A0,F16

 kkk = kkk + 3

 write kkk into BRANCH,CRATE,13,A0,F16

 kkk = kkk + 1

 write kkk into BRANCH,CRATE,14,A0,F16

13

 link trigger lam BRANCH,CRATE,SLOT26,A0

 log inform "TEST_CAMLIST:: Hardware initialised - ready to go\n"

 mmm = mmm - 1

 write mmm into BRANCH,CRATE,17,A0,F16

end prestart

!---------------------------------------!-----------------------------

begin end

 log inform "TEST_CAMLIST:: end list executing - trigger disabled\n"

end end

!---------------------------------------!-----------------------------

begin pause

 log inform "TEST_CAMLIST:: pause list executing - trigger disabled\n"

end pause

!---------------------------------------!-----------------------------

begin go

 log inform "TEST_CAMLIST:: Go list executing - enabling trigger\n"

end go

!---------------------------------------!-----------------------------

begin trigger

 if testvar is less than 512 then

 testvar = testvar + 1

 else

 testvar = 1

 end if

 mmm = qqq

 write mmm into BRANCH,CRATE,17,A0,F16

 write testvar into BRANCH,CRATE,OUTREG,A0,F17

 channel = 0

 while channel is less than 16

 read BRANCH,CRATE,1,channel,F2

 channel = channel + 1

 end while

14

 channel = 0

 while channel is less than 16

 read BRANCH,CRATE,5,channel,F2

 channel = channel + 1

 end while

 channel = 0

 while channel is less than 16

 read BRANCH,CRATE,10,channel,F2

 channel = channel + 1

 end while

channel = 0

 while channel is less than 16

 read BRANCH,CRATE,14,channel,F2

 channel = channel + 1

 end while

 mmm = mmm - 1

 write mmm into BRANCH,CRATE,17,A0,F16

end trigger

!---------------------------------------!-----------------------------

begin done

control BRANCH,CRATE,MAIN,A0,F9 ! clear MAIN

 control BRANCH,CRATE,1,A0,F9

 control BRANCH,CRATE,5,A0,F9

 control BRANCH,CRATE,10,A0,F9

 control BRANCH,CRATE,13,A0,F9

 control BRANCH,CRATE,14,A0,F9

end done

!---------------------------------------!-----------------------------

begin status

 log inform "TEST_CAMLIST:: nothing to do in status \n"

end status

15

Appendix 6: An example of an analyzer file

Each section of this file refers to a correspondence section in the *.crl file and also the CODA window. For
example userevent is activated at the same time as trigger and that is when the go button on the CODA window
is activated.

c**

c

c file = ebana_test.f

1 "ebana_test.f"

c--*

c Copyright (c) 1991, 1992 Southeastern Universities Research Association,

c Continuous Electron Beam Accelerator Facility

c

c This software was developed under a United States Government license

c described in the NOTICE file included as part of this distribution.

c

c CEBAF Data Acquisition Group, 12000 Jefferson Ave., Newport News, VA 23606

c heyes@cebaf.gov Tel: (804) 249-7030 Fax: (804) 249-7363

c--*

c

c CODA

c

c Example FORTRAN user analysis program.

c

c The program calls rc_open to connect to the general CODA run-control

c the routine rc_service MUST be called within any tight loops for

c the run-control interface to retain control.

c The routine da_getevent returns with a status of zero if there was

c an event to be analysed. The other two parameters are an array and

c an integer initialised to the size of the array, this integer value

c is modified to reflect the true event size.

c==c

program usrmain

 implicit none

16

c--c

c We will be an analysis program so need the analysis services

c--c

 real rc_service_ana, rc_service_eb

common/rc_service_ana/rc_service_ana

 common/rc_service_eb/rc_service_eb

c--c

c open communication with run control

open(unit=8,file='/usr1/muondaq/daq/run/myout3.dat',

 & status='unknown')

call rcService(rc_service_eb)

call rcService(rc_service_ana)

write (8,*)' trying call to dalogopen'

write (8,*)' back from call to dalogopen - calling dalogmsg'

call daLogMsg(" ************ logging link open from ebana 1")

call daLogMsg(' *********** logging link open from ebana 2')

write (8,*) ' ************** logging link open from ebana'

call rcExecute()

c *** WARNING *** no code below rcExecute() gets executed! 21 Dec 95 HvH

c *** WARNING *** Put your code above

end ! usrmain

c==c

subroutine usrEvent(event, len, status)

c--c

c put here anything that you need to do with the event. !hbook

c--c

 implicit none

 include 'hist.inc'

17

 include 'rawdata.inc'

 include 'scint.inc'

 include 'delaych.inc'

 integer i, j, k, numwrd

integer status

logical lfirst, baddata

character*48 frmt

common /flags/ lfirst

data lfirst /.true./

C Fill NTUPLE array with raw data values, and fill NTUPLE.

 DO I = 1, 64

 VALUES(I) = FLOAT(EVENT(I+9))

 END DO

 BADDATA = .FALSE.

 DO I = 1, 32

 IF (VALUES(I) .GT. 2000) BADDATA = .TRUE.

 END DO

 IF (.NOT. BADDATA) THEN

 call hfn(1,values) !hbook

 END IF

c--c

C Put raw delay-line chamber data into array ICHMB

J = 11

DO I = 1, 4

 DO K = 1, 8

 ICHMB(K,I) = EVENT (J)

 J = J + 1

 END DO

END DO

18

C Put raw scintillator into appropriate variables

 S1T = EVENT(44)

 S2T = EVENT(45)

 S3T = EVENT(46)

 S4T = EVENT(47)

 S1PH = EVENT(48)

 S2PH = EVENT(49)

c call daLogMsg("USREVENT:: here...")

C Call routine which calculates positions in delay-line

C drift chamber.

 call TIMING

C Write out raw data

if (lfirst) then

 lfirst = .false.

 write (6,20)

 write (8,20)

 20 format(/,

 & ' <---- standard physics event ----- - - - - - - - ',/,

 & ' <---- event ID ----> <-- ROC - - - - - - ',/,

 & ' len ev 10CC 4= C000dt00 ev clas fr 1ev. ',/,

 & ' type tag len tag 01nm # sum len # <-- data --- - - ',/,

 & ' --')

endif

write (frmt,30) len-8

 30 format ('(2z3,z6,z2,z9,4z3,z4,',i2.2,'z5,z9)')

write (8,frmt) len, (event(i),i=1,len+2)

write (6,frmt) len, (event(i),i=1,len+2)

 write(6,*) values(32)

19

numwrd = event(8)

end ! usrevent

c==c

subroutine usrdownload(fname)

c--c

c can"t think of anything to go here...

c you could open a file and read in scale factors etc though...

c--c

 implicit none

 character*(*) fname

C Read in code constants:

call datain

call daLogMsg("USRDOWNLOAD:: here...")

write (8,*) ' USRDOWNLOAD:: here...'

end ! usrdownload

c==c

subroutine usrprestart(rn,rt)

c--c

c These are all for hbook

c--c

c integer nvar

 implicit none

include 'hist.inc'

 integer rn, rt

 integer istat

call hlimit (500000)

write(*,*)'booking histograms'

call hbookn(1, 'rawdata', nvar,'aptuple', nvar*200, nnames)

20

call hropen (66, 'aptuple', 'grout3', 'N', 1024, istat)

c--c

c put here anything you want doing when the analysis program is

c prestarted, i.e. Just before a new run...

c--c

call daLogMsg("USRPRESTART:: here...")

write (8,*) ' USRPRESTART:: here...'

end ! usrprestart

c==c

subroutine usrend

c--c

c usrend does all diagnostic analysis of Ntuple 9 generated by coda.

c The code below is almost identical to the stand alone test program

c analize.f. All histograms and the Ntuple are saved in the file

c coda_ntup.dat.

c--c

 implicit none

logical lfirst

common /flags/ lfirst

 integer icycle

c--c

call hcdir('//aptuple',' ') !hbook

call hrout(0,icycle,'') !hbook

call hrend('aptuple') !hbook

close (66) !hbook

lfirst = .true.

call daLogMsg("USREND:: here...")

write (8,*) ' USREND:: here...'

close (8)

end ! usrend

c==c

subroutine usrpause

21

c--c

c you probably won"t need anything here, this routine gets called

c when pause run is selected...

c--c

 implicit none

call daLogMsg("USRPAUSE:: here...")

write (8,*) ' USRPAUSE:: here...'

end ! usrpause

c==c

subroutine usrgo

c--c

c put here anything you need doing just as the run starts or after

c a pause. NB difference from usrprestart which gets called only

c once per run while usrgo gets called after a pause too.

c--c

 implicit none

call daLogMsg("USRGO:: here...")

write (8,*) ' USRGO:: here...'

end ! usrgo

c==c

subroutine usrdump

c--c

c dump all the histograms to a file so PAW can read them...

c--c

 implicit none

call daLogMsg("USRDUMP:: here...")

write (8,*) ' USRDUMP:: here...'

end ! usrdump

c==c

22

Appendix 7: An example of rcNetwork file

!+

! File:-

! rcNetwork

!

! Description:-

! Network Configuration file.

!

! A Host of $NODE implies the same node as RunControl.

!

! -p lines after EB, ANA, give default event builders and

! analyzers to use if the DOWNLOAD does not work on

! configured event type

!-

!Name Num Type Host BootScript

!---- --- ---- ---- ----------

ROC0 0 ROC 128.165.86.79

 EBP 2 EB $NODE $CODA_BIN/coda_activate -p /usr1/muondaq/daq/run/ebana_test

 ANAP 3 ANA $NODE $CODA_BIN/coda_activate -p
/usr1/muondaq/daq/run/ebana_test

 EBE 2 EB $NODE $CODA_BIN/coda_activate -p /usr1/muondaq/daq/run/ebana_elect

 ANAE 3 ANA $NODE $CODA_BIN/coda_activate -p
/usr1/muondaq/daq/run/ebana_elect

 EBW 2 EB $NODE $CODA_BIN/coda_activate -p /usr1/muondaq/daq/run/ebana_wang

 ANAW 3 ANA $NODE $CODA_BIN/coda_activate -p
/usr1/muondaq/daq/run/ebana_wang

Appendix 8: An example of physics.config

!+

! File:-

! physics.config

!

23

! Description:-

! Physics RunType Configuration File

!

ROC0 /usr1/muondaq/daq/run/second.o

 EBP

 ANAP /usr1/muondaq/daq/run/ebana_test.log

Appendix 9: An example of rcRunTypes

!+

! File:-

! rcRunTypes

!

! Description:-

! RunType File. Enumerates the available run types and their numbers

!-

Physics 1

Calibration 2

Test 3

electronics 4

wangdata 5

