[bookmark: _GoBack]Station 1,2,3 chunks are written to this fifo. If write_en isn’t working, problem upstream (means data word is already improperly formed). Could read_en problem cause the 9-chip chunks of stations 1,2,3 loss?
Station 0 bypasses this block so any problem here cannot account for lost station 0 wedges.
Upon LATCH, determine what phase of clock to use for FPHX words
Determine if data lines should be blocked (SHIFT)
This seems ruled out because (1) some wedges are lost in middle of data taking (not LATCH then) (2) shift_in, shift_en are only enabled for FPGAs A and C
Write is bit_0, bit_16 of data word.
read_en is always ‘1’
Write is bit_0, bit_16 of data word.
read_en derived from EMPTYs (parallel_arbiter)
Since read_en is tied to ‘1’ can only be problem here if somehow the data word is garbled and it doesn’t find bit_0, bit_16 set to ‘1’ (?). But that would mean a problem up-stream
Passively or’s data. This is where chips are first grouped in chunks of 8, 9 (stations 1,2,3) or 10 (station 0). Doesn’t seem like this could have a problem since it is a passive piece of code unless somehow the pieces that are being or’ed are colliding with each other (?).
write_en from decoder array round-robin
Deserialize FPHX data
Output data according to write_en from decoder_array round-robin. Can this somehow get out of sync?
latch
shift_in, shift_en
output_fifo_block
Station data or’ed together (stations 1-3 have 3 groups of data)
fifo_block
output_arbiter
or_array
deser_array
pf_array
roc_block

o ——

ey s

I e ¥ M

