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Abstract

The search for particle electric dipole moments (edm) represents a
most promising way to search for physics beyond the standard model.
A number of groups are planning a new generation of experiments using
stored gases of various kinds. In order to achieve the target sensitivities
it will be necessary to deal with the systematic error resulting from the
interaction of the well-known −→v × −→E field with magnetic field gradients
(often referred to as the geometric phase effect (Commins, ED; Am. J.
Phys. 59, 1077 (1991), Pendlebury, JM et al; Phys. Rev. A70, 032102
(2004)). This interaction produces a frequency shift linear in the electric
field, mimicking an edm. In this work we introduce an analytic form
for the velocity auto-correlation function which determines the velocity-
position correlation function which in turn determines the behavior of
the frequency shift (Lamoreaux, SK and Golub, R; Phys. Rev A71,
032104 (2005)) and show how it depends on the operating conditions of
the experiment. We also discuss some additional issues.
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1 Introduction
The proposition that the search for particle electric dipole moments (edm) rep-
resents a reasonable method to look for physics beyond the standard model [1]
is inspiring many groups to search for edm’s in a variety of systems. (See [2] for
a recent review). Experiments on several systems including the neutron [3], and
several species of confined gases [4] including Radium [5], Radon [6] and Xenon
[7] are in various stages of preparation. These experiments are all hoping to
reach sensitivities in the range of 10−27−10−28e−cm. Sensitivity in this range
has already been achieved in the case of Hg [8]. The experiments proposed
represent a broad range of operating conditions, from room temperature gases
with buffer gas to laser cooled atoms in a MOT.
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In order to achieve the target sensitivities it will be necessary to deal with
the systematic error resulting from the interaction of the well-known −→v ×−→E field
with magnetic field gradients. Often referred to as the geometric phase effect
[9], [10] this interaction produces a frequency shift linear in the electric field,
mimicking an edm. This systematic effect is highly dependent on the operating
conditions of the experiment. While experiments in small vessels and with high
pressure buffer gas are expected to be relatively insensitive to the systematic
effect, each of the proposed experiments will have to be analyzed in detail to
judge its sensitivity to the effect and to find methods of dealing with it.
In this work we introduce an analytic form of the correlation function which

determines the behavior of the frequency shift [11] and show in detail how it
depends on the operating conditions of the experiment. For clarity we special-
ize the discussion to the Los Alamos proposal for a neutron edm search using
Ultra-cold neutrons (UCN) and He3 atoms diffusing in superfluid He4 as a
co-magnetometer, [12] but the generalization to other cases is straightforward.
First analyzed by Commins [9] in the context of a beam experiment, the

frequency shift has been discussed in some detail by Pendlebury et al [10] in
connection with experiments involving stored particle gases. Additional discus-
sion and calculations have been given by [11].
Our present understanding of the effect can best be summarized by figure

1, which appeared as figure 3 in [11]. This is a plot of the normalized (linear in
E) frequency shift, δω, vs. normalized Larmor frequency, ω0, for various values
of collision mean free path, λ, and wall specularity, calculated for particles
moving with fixed velocity, v, in a cylindrical measurement cell of radius R.
The horizontal scale is fixed by the frequency of motion around the cell (v/R).
In general the shift for UCN will be given by a value of ωo > 4 while co-
magnetometer atoms are characterized by ωo ¿ 1.
These results have been obtained by numerical simulation of the position-

velocity correlation function and taking the Fourier transform. According to
[[11], Eq. 26] the frequency shift is given by

δω =
ab

2
lim
τ→∞

τZ
0

R (t) cos(ω0t)dt, (1)

where a = γ
2∂Bz/∂z, b = γE/c, γ is the gyromagnetic ratio, and R (τ) is the

position-velocity correlation function for motion in the plane perpendicular to
the z axis, defined in [[11], Eq.. 27]:

R (τ) = h−→r⊥(t) ·−→v⊥(t− τ)−−→r⊥(t− τ) ·−→v⊥(t)i . (2)

From the experimental point of view it is very appealing to try to make use of
the zero crossing, apparent in figure 1, to reduce the effect.
In this note we present an analytic form for the velocity correlation function

from which R (τ) can be determined and compare it to the results obtained
previously by numerical simulations. In the collision-free case we obtain the
result obtained in ([10], Eq.. 78) for a single trajectory. Using the analytic
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Figure 1: Note the curves are for a single fixed velocity. The velocity dependence
is contained in the normalization of the frequency scale, ωr = v/R.
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function for the case with gas collisions, we average over a Maxwell velocity
distribution and calculate the temperature dependence of the frequency shift
for 3He diffusing in superfluid 4He. We also propose a method for measuring
the spectrum of the correlation function, i.e. the frequency dependence of the
shift, directly.

2 Analytical form for the correlation function
R (τ)

According to [11] the correlation function R(τ) is determined by the velocity
autocorrelation function,

ψ(t) ≡ h~v⊥(t) · ~v⊥(0)i, (3)

namely,

R(τ) = 2

τZ
0

ψ(t)dt. (4)

Notice, that
R(τ)→ 0, when τ →∞. (5)

Thus we start by considering ψ(t).

2.1 Specular wall collisions, no gas collisions

2.1.1 Specification of trajectories

We consider particles moving ballistically in a cylindrical storage cell with a
fixed velocity v. As shown in [10],[11] the frequency shift depends only on the
motion in the x, y plane. Referring to figure 2, the trajectory sweeps out an
angle

α = arccos
³ r
R

´
(6)

with respect to the center in a time

τw =
2R sinα

v
(7)

where τw is the time between wall collisions. For specular reflections the angle
α, characterizing the trajectory and the velocity are unchanged by reflection.
The average angular velocity for a single trajectory is then

ω(α) =
2α

τw
. (8)

Let F (r) dr be the probability that the trajectory of a particle has a distance
of closest approach to the center in the interval (r, r + dr). According figure 2,

F (r) dr =
2
√
R2 − r2 dr
πR2/2

⇒ F (r) =
4
√
R2 − r2
πR2

. (9)
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Figure 2: Trajectory of a particle in a cylindrical cell.

We will use the distribution P (α)dα of the trajectories over the angle α, where

P (α)|dα| = F (r)|dr| ⇒ P (α) = F (r)

¯̄̄̄
dr

dα

¯̄̄̄
=
4 sin2 α

π
,

π/2Z
0

P (α)dα = 1,

(10)
a result obtained in [10].

2.1.2 The velocity autocorrelation function

We now calculate the velocity autocorrelation function for the particles moving
along the trajectories with given α (or the pericenter r = R cosα),

ψ(α, t) = h~v⊥(t) · ~v⊥(0)i, ψ(α, 0) = v2⊥. (11)

Here the averaging goes only over the initial position of the particles. Let the
velocity autocorrelation function be denoted by

f(x,α, t) ≡ ~v⊥(t) · ~v⊥(0)
v2

. (12)

for a particle on a trajectory characterized by α, starting at the position x,
measured from the end of a chord, at t = 0. Thus,

ψ(α, t) =
v2

2R sinα

2R sinαZ
0

f(x,α, t)dx. (13)
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As the speed |−→v | = v is not changed by the collisions the velocity correlation
function is proportional to cos θ(t) where θ(t) is the angle between ~v⊥(t) and
~v⊥(0). The starting position x determines the exact times at which the collisions
occur, the time between collisions being given by (7) in all cases.
As a result, for the time l · τw < t < (l + 1) · τw (l = 0, 1, 2 . . .) the function

f is given by

f(x,α, t) =

½
cos(2(l + 1)α), 0 < x < v(t− l · τw),
cos(2lα), v(t− l · τw) < x < 2R sinα,

(14)

Then performing the averaging (13) the autocorrelation function takes the form:

ψ(α, t) = v2(Al +Bl
t

τw
), (15)

where

Al = (l + 1) cos(2lα)− l cos(2(l + 1)α), (16)

Bl = cos(2(l + 1)α)− cos(2lα). (17)

2.1.3 Spectrum of the velocity correlation function

The autocorrelation function can be written as a Fourier integral, valid for both
closed, periodic orbits and general open ones:

ψ(α, t) =

+∞Z
−∞

Ψ(α,ω) cos(ωt)dω, (18)

where Ψ(α,ω) = Ψ∗(α,ω) and Ψ(α,ω) = Ψ(α,−ω), so that

Ψ(α,ω) =
1

π

∞Z
0

ψ(α, t) cos(ωt)dt. (19)

Straightforward calculation (see Appendix A) gives:

Ψ (α,ω) =
2v2 sin2 α

ω2τ2w

∞X
m=−∞

∙
δ

µ
ω +

2α− 2πm
τw

¶
+ δ

µ
ω − 2α+ 2πm

τw

¶¸

=
2v2 sin2 α

ω2τ2w

∞X
m=−∞

£
δ
¡
ω − ω+m(α)

¢
+ δ

¡
ω − ω−m(α)

¢¤
(20)

where

ω±m(α) =
2 (πm± α)

τw
. (21)
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Notice that these frequencies are the resonant frequencies found previously in
the behavior of the the frequency shift as function of the angle α for particles
moving inside a cylindrical cell without any damping — see figure 7 and equation
(78) in [10]. (Below we rederive this equation in the frame of our approach and
show how it can be generalized to account for damping).

2.1.4 Solution for the frequency shift in the absence of gas collisions

Now the frequency shift ∆ω (α) see equation (40) ref. [11]

−∆ω (α) = ab
Z ∞
−∞

Ψ (α,ω)

(ω2o − ω2)
dω

= 2abv2 sin2 α
∞X

m=−∞

Z ∞
−∞

h
δ
³
ω + 2α−2πm

τw

´
+ δ

³
ω − 2α+2πm

τw

´i
(τwω)

2
(ω2o − ω2)

dω

= 2abv2 sin2 α
∞X

m=−∞
τ2w × ...

...×

⎡⎣ 1

(2α− 2πm)2
1³

τ2wω
2
o − (2α− 2πm)

2
´ + 1

(2α+ 2πm)
2
³
τ2wω

2
o − (2α+ 2πm)

2
´
⎤⎦

(22)

The sum is over all m, so terms with ±m are included twice. Using τw =
2R sinα/v and writing ωoτw = 2ωoR sinα/v = 2ω0o sinα ≡ 2δo with ω0o = ωoR/v
being the dimensionless frequency we then find:

−∆ω (α) = R2ab sin4 α
∞X

m=−∞

1

(α+ πm)
2

1³
δ2o − (α+ πm)2

´ (23)

=
1

2δo
R2ab sin4 α

∞X
m=−∞

×...µ
1

((δo − α)− πm)
+

1

((δo + α) + πm)

¶
1

(α+ πm)
2 , (24)

−∆ω (α) = R2ab sin2 α
∞X

m=−∞

1

(α+ πm)
2

1³
ω02o −

(α+πm)2

sin2 α

´ , (25)

We now evaluate (24) using equation (72) derived in Appendix B.

+∞X
n=−∞

1

(πn− ϕ)2(πn− θ)
=

1

(ϕ− θ) sin2 ϕ
− cot θ − cotϕ

(ϕ− θ)2

Rewriting (24):

−∆ω (α) = 1

2δo
R2ab sin4 αΛ
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with

Λ =
∞X

m=−∞

µ
1

((δo − α)− πm)
+

1

((δo + α) + πm)

¶
1

(α+ πm)
2

=
1

δo sin
2 α

+
cot (δo − α) + cotα

δ2o
+

1

δo sin
2 α

+
cot (δo + α)− cotα

δ2o

=
2

δo sin
2 α

+
cot (δo − α) + cot (δo + α)

δ2o

=
2

δo sin
2 α

µ
1 +

sin2 α sin 2δo
2δo sin (δo − α) sin (δo + α)

¶
we find

−∆ω (α) =
µ
v

ωo

¶2
ab

µ
1 +

sin2 α sin 2δo
2δo sin (δo − α) sin (δo + α)

¶
(26)

This formula was originally derived in [10], (equ. 78) by direct solution of
the classical Bloch equations and the result shows the equivalence of the two
methods.

2.2 Influence of Gas collisions

2.2.1 The collision-free velocity correlation function as a sum of har-
monic oscillators

Substituting (20) into (18), we obtain for the velocity autocorrelation function:

ψ(α, t) =
2v2 sin2 α

τ2w

∞X
n=−∞

"
cosω+n (α) t¡
ω+n (α)

¢2 +
cosω−n (α) t¡
ω−n (α)

¢2
#

(27)

=
2 sin2 α

τ2w

∞X
n=−∞

"
ψ+n (α, t)¡
ω+n (α)

¢2 + ψ−n (α, t)¡
ω−n (α)

¢2
#

(28)

i.e. a sum of oscillating terms
¡
ψ±n (α, t) = v

2 cosω±n (α) t
¢
with different frequencies.

Each term obeys an equation:

d2ψ±n (α, t)

dt2
+ (ω±n (α))

2ψ±n (α, t) = 0. (29)

Notice that the fundamental frequency ω+0 (α) coincides with (8). The cor-
responding term obviously dominates in the decomposition (28).

2.2.2 Velocity correlation function in the limit of short gas-collision
times

We consider a particle that moves among scattering centers. If τc is the average
time between collisions the velocity autocorrelation function will have the form
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[14], [15].
ψ(t) ≡ h~v(t)~v(0)i = v2 e− t

τc . (30)

In the other words, ψ(t) obeys the equation:

dψ(t)

dt
+
1

τc
ψ(t) = 0. (31)

2.2.3 Combined influence of gas and specular wall collisions

The velocity autocorrelation function in the absence of collisions is given by the
sum of the motions of a group of harmonic oscillators (28). In the presence
of gas collisions the individual oscillators ψ±n (α, t) will obey the equation for a
damped harmonic oscillator which is the combination of (31) and (29), i.e.

d2ψn(t)

dt2
+
1

τc

dψn(t)

dt
+ ω2nψ(t) = 0, (32)

with the initial condition:

ψ±n (α, 0) = v
2. (33)

The boundary conditions (4) and (5) satisfied by ψ(t) mean that

τZ
0

ψn(α, t)dt −→ 0, when τ →∞. (34)

Generally, the equation for a damped harmonic oscillator (32) has the general
solution:

ψ(t) = c1e
−η1t + c2e

−η2t, (35)

where

η1 =
1

2τc
+

s
1

4τ2c
− ω2 , η2 =

1

2τc
−
s

1

4τ2c
− ω2 . (36)

Taking into account boundary conditions (33) and (34), we get:

ψn(t) =
v2η1

η1 − η2

µ
e−η1t − η2

η1
e−η2t

¶
. (37)

The correlation function (4) takes the form (Eq. 36, [11]):

Rn(α, τ) = 2

τZ
0

ψn(α, t)dt =
2v2

η1 − η2

³
1− e−(η1−η2)τ

´
e−η2τ ,

The last expression can be rewritten in the form:

Rn(α, τ) =
2λv

s(ω, τc)
e−t/2τc

³
es(ω,τc)t/2τc − e−s(ω,τc)t/2τc

´
, (38)
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with
λ = vτc, s(ω, τc) =

p
1− 4ω2τ2c . (39)

We then have for a single oscillator (see equation 1)

δωn =
ab

2
lim
t→∞

tZ
0

Rn (τ) cos(ω0τ)dτ = abSn,d (ωo) (40)

Sn,d (ωo) = −v2
¡
ω2o − ω2n

¢³
(ω2o − ω2n)

2
+

ω2o
τ2c

´
= −R2

¡
ω02o − ω02n

¢³
(ω02o − ω02n )

2
+ ω2or

2
o

´ (41)

where we again introduced ω0o = ωoR/v and ro = R/λc(v) with λc(v) the
velocity dependent mean free path. The frequency shift will then be a sum of
such terms for each of the oscillators as in (25).
Comparing to the collision-free case in (25) we see that in the presence of

damping the frequency shift will be given by

−∆ω (α) = R2ab sin2 α
∞X

m=−∞

1

(α+ πm)2

⎡⎢⎢⎣
³
ω02o −

(α+πm)2

sin2 α

´
µ³

ω02o −
(α+πm)2

sin2 α

´2
+ ω02o r

2
o

¶
⎤⎥⎥⎦
(42)

that is we go from the collision free case to the case of gas collisions by replacing

fα (ω
0) =

1³
ω02o −

(α+πm)2

sin2 α

´
in (25) by the square bracket in (42) or by replacing fα (ω0) by fα

¡
ω0
p
1 + i roω0

¢
and taking the real part. Since we have evaluated the summation (25) we obtain
the frequency shift by making the equivalent transformation to (26)

−∆ω (α) = R2ab sin2 αRe
(
FP (α, δ = δo

r
1 +

i

ωoτc
)

)
(43)

where

FP (α, δ) =

µ
1 +

sin2 α sin 2δ

2δ sin (δ − α) sin (δ + α)

¶
1

δ2

(remember δo = ωoτw/2). For a fixed velocity we average over α, according to
(10):

∆ω =

Z π/2

0

dαP (α)∆ω (α) (44)

11



0 0.5 1 1.5 2 2.5 3 3.5 4
1

0.75

0.5

0.25

0

0.25

0.5

0.75

1

1.25

1.5
1.5

1−

02j

i02 1,

05j

i05 1,

j

1,

2j

1,

4j

1,

0j

i10 1,

40 ω j n02i02 0,, ω j, n05i05 0,, ω j, n1i1 0,, ω j, n2i2 0,, ω j, n4i4 0,, ω j, n10i10 0,,'ω

)ω′

Figure 3: Normalized frequency shift for a constant velocity as a function of
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parameter ro = R/λ. Solid curves - results of the analytic function, equations
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The results are shown in fig. 3 in comparison with the results of the numerical
simulations obtained in[11].
We see the agreement is quite good, within the uncertainties of the numerical

simulations. The agreement in the region of the zero-crossings is excellent.

3 Frequency shift averaged over velocity distri-
bution, temperature dependence

In the neutron edm experiment proposed by the EDM collaboration [12] a dilute
solution of He3 dissolved in superfluid He4 will be used as a co-magnetometer
to monitor magnetic field fluctuations. As such the He3 will see essentially the
same magnetic and electric fields as the neutrons and will be subject to the
linear E field systematic under discussion.
Using the analytical form of the correlation function we can average the E

field proportional frequency shift over the Maxwell velocity distribution for a
gas in thermal equilibrium. We take the realistic case of the mean free path for
collisions proportional to velocity, (collision time τc, independent of velocity).
corresponding to a cross section ∼ 1/v. This applies to He3 in superfluid
He4. Since the velocity of the He3 is much less than the phonon velocity (2.2×
104cm/ sec) the collision rate of phonons with the He3 will be independent of
the He3 velocity. Thus in a time τc a He3 with velocity v, will move a distance
λv(T ) = vτc(T ). We will obtain the collison time, τc(T ), from the measured
values of the diffusion constant for He3 in superfluid He4 [13]:

D (T ) =
1.6

T 7
cm2/ sec

Then τc(T ) = 3D (T ) /
­
v2
®
T
where

­
v2
®
T
is the mean square velocity in a

volume of gas. ro is defined as

ro =
R

λv(T )
=

R

vτc(T )
=

R

yβ (T ) τc(T )
≡ ro
y

with y = v/β(T ) and β(T ) is the most probable velocity in a volume. R the
radius of the cylindircal vessel is taken as R = 25cm in the numerical calcula-
tions. Both

­
v2
®
T
and β(T ) are calculated using the effective mass of He3 in

the superfluid: m3 = 7.2 amu.
For a single velocity the frequency shift will be given by (42) or (43) averaged

over α. Using Eq. (10)

−∆ω =
Z π/2

0

dαP (α)∆ω (α)

= R2ab
4

π

Z π/2

0

dα sin4 α
X
m

1

(α+ πm)2

⎡⎢⎢⎣
³
ω02o −

(α+πm)2

sin2 α

´
µ³

ω02o −
(α+πm)2

sin2 α

´2
+ ω02o r

2
o

¶
⎤⎥⎥⎦

(45)
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Figure 4: Normalized velocity averaged frequency shift vs. reduced frequency
ω∗=ωoR/β (T ) for various temperatures using the temperature-dependent mean
free path for He3 in He4.

We now replace ω0o = ωoR/v = ωoR/yβ(T ) = ω∗o/y where ω∗o = ωoR/β(T ).
Then

−∆ω(y) = R2ab 4
π

Z π/2

0

dα sin4 α
X
m

1

(α+ πm)2

⎡⎢⎣
³
ω∗2o −

(α+πm)2

sin2 α
y2
´
y2³

ω∗2o −
(α+πm)2

sin2 α
y2
´2
+ ω∗2o r

2
o

⎤⎥⎦
where ro = roy = R/λc. Averaging over the two dimensional velocity distribu-
tion (−→v ⊥) we obtain for the normalized frequency shift

Ψ (ω∗o , T ) =
2

abR2

Z
ye−y

2

∆ω(y)dy (46)

The results are plotted in fig. 4 which shows the frequency shift as a function
of reduced frequency ω∗ for various temperatures.
In figure 5 we show an expanded plot of the normalized frequency shift in

the region near the zero crossings as a function of temperature for fixed ω∗ (T ).
It is evident that the collisional damping can lead to large reductions in the

effect for He3.
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Figure 5: Normalized velocity-averaged frequency shift, Ψ (ω∗, T ) vs. tempera-
ture, T , for various reduced frequencies ω∗=ωoR/β (T ) using the temperature-
dependent mean free path for He3 in He4
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4 Non-specular wall collisions
In this section we give a brief description of how non-specular wall collisions can
be included in the calculation. Detailed study of this problem will be left for a
future work.
In the preceding sections we have shown that the velocity autocorrelation

function can be regarded as the result of the sum of harmonic oscillators of
different frequencies.
Considering one such oscillator during one traversal of the cell the oscillator

will undergo a phase change

φ = ωτw = 2α. (47)

A non-specular reflection from the wall would result in a change in the incident
angle for the next collision, χ, by a random amount ∆χ and hence a change in
the accumulated oscillator phase by

∆φ = 2∆χ, (48)

because χ = π
2 − α.

Since the changes ∆φ are random the phase φ will make a random walk so
that after a time t we will haveD

(∆φ)
2
E
t
= 4

D
(∆χ)

2
E t

τw
. (49)

in the case of small ∆φ¿ 1. Averaging the amplitude of the oscillator over the
distribution of ∆φ, assuming a Gaussian distribution for ∆φ, the amplitude will
be reduced by

hcosφi ' e(−
1
2 h(∆φ)2it) ' exp

µ
− t

2τns

¶
, (50)

where

1

τns
=
4
D
(∆χ)

2
E

τw
. (51)

Thus non-specular collisions can be taken into account by the change of the
damping term in (32):

1

τc
−→ 1

τc
+

1

τns
. (52)

Non-specular wall collisions will thus have a different influence than the gas
collisions because of the dependence of τw ∼ sinα on α.
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5 Arbitrary Magnetic field geometry
Our discussion has assumed a magnetic field configuration with Gz = ∂Bz/∂z
constant. Pendlebury et al [10] have shown, using a geometric phase argument,
that regardless of the field geometry the effect only depends on the volume
average of Gz in the high frequency (called by them the adiabatic) limit. In a
recent note, Harris and Pendlebury [16] have shown that in the case of a field
produced by a dipole external to the measurement cell, this does not hold in the
low frequency (diffusion) limit. In this section we discuss this problem using our
correlation function approach in order to give some physical insight into what
is happening and display details of the transition from one case to another.

5.1 Short time (high frequency, adiabatic) limit of the cor-
relation function

Reference [11], has shown that the systematic edm is given, in general, as the
Fourier transform of a certain correlation function of the time varying field seen
by the neutrons as they move through the apparatus. Equation (23) of that pa-
per gives the frequency shift proportional to E as (−→ω (t) lies in the x, y plane)

δωE(t) = −
1

2

Z t

0

dτ

½
cosωoτ [

−→ω (t)×−→ω (t− τ)]
+ sinωoτ [ωx (t)ωx (t− τ) + ωy (t− τ)ωy (t)]

¾
(53)

It can be shown that the term multiplying sinωoτ goes to zero on averaging
over a uniform velocity distribution

¡
hvxvyi = 0, v2x = v

2
y = v

2/2
¢
and using

−→∇ ×−→B = 0.Then, for short times, τ,

δω(t) = −1
2

Z t

0

dτ

½
cosωoτ

∙
−→ω (t)×

µ
−→ω (t)− d

−→ω
dt

τ +
1

2

d2−→ω
dτ2

τ2 + ...

¶¸¾
= −1

2

Z t

0

dτ

½
cosωoτ

∙
−−→ω (t)×

µ
d−→ω
dt

τ − 1
2

d2−→ω
dτ2

τ2 + ...

¶¸¾
(54)

We are considering values of τ so small that the velocity doesn’t change in
that time interval (τ < τcoll) .
Then

−→ω (t) = γ
³−→
B xy(t) +

−→v /c×−→E
´

d−→ω
dt

= γ
³←→OB (−→x (t)) ·−→v ´

d2−→ω
dτ2

= γ
X
i,j

∂2
−→
B

∂xi∂xj
vivj
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and

δω(t) = − γ

2c

Z t

0

dτ cosωoτ

∙
−
³−→
B xy(t) +

−→v ×−→E
´
×
µ
∂−→ω
∂t

τ − 1
2

∂2−→ω
∂τ2

τ2 + ...

¶¸
(55)

The term linear in
−→
E and τ is then

δω(t) = −γ
2

2c

Z t

0

dτ cosωoτ
h³←→OB ·−→v ´ τ × ³−→v ×−→E´i

≡ γE

2

Z t

0

dτ cosωoτ (ατ) (56)

defining

α =
γ

c

³←→OB ·−→v ´ ·−→v
We have now calculated the correlation function for short times. It starts at zero
at τ = 0 and rises as ατ . Eventually it will reach a maximum. By concentrating
on the high frequency (ωo) behavior of δω the result will be independent of the
details of the maximum, depending only on α. Thus we can replace ατ in (56)
by sinατ or any function with the same initial slope. Thus we are led to take

δω(t) ≡ γE

2
lim

ωo→∞

Z t

0

dτ cosωoτ sinατ

= lim
ωo→∞

γE

2

α

ω2o − α2
=

γE

2

α

ω2o

=
E

2cB2o

³←→OB ·−→v ´ ·−→v
Introducing components, taking averages and using −→O ·−→B = 0 this reduces to

δωgeo = −Ev2
1

4cB2o

¿
∂Bz
∂z

À
(57)

in agreement with Eq.. (2) of [11] if, in that equation, R2ω2r is replaced by­
v2
®
= v2/2. We have shown that in the adiabatic (short time) limit the

systematic (false) edm effect depends only on
­
∂Bz

∂z

®
regardless of the geometry

of the magnetic field, a result obtained previously by Pendlebury et al [10] and
confirmed in [16].
The next order term in (55) is easily seen to be of order v3τ2 and so will

average to zero, the next term which contributes will be of order v4τ3 and so
will be negligible in the short time limit we are considering. The condition for
this to be valid is (vτ/L)2 ¿ 1 where L is the scale of variations in the applied

magnetic field
³
∂Bz

∂z
1
Bz
∼ L−1

´
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5.2 Longer time behavior of the correlation function

For long times the expansion (54) is clearly not valid and we must expand in a
series in the spatial coordinates. We start from

δω = −γ
2

2

Z
dτ cosωoτ

D−→
B 0 (t)×−→B 0 (t− τ)

E
z

where b = E/c, the brackets represent an ensemble average and

B0x = Bx (
−→r (t))− bvy

B0y = By (
−→r (t)) + bvx

Then we writeD−→
B 0 (t)×−→B 0 (t− τ)

E
z
= b

¿
Bx (
−→r (t)) vx (t− τ)− vy (t)By (−→r (t− τ))

− (Bx (−→r (t− τ)) vx (t)− vy (t− τ)By (
−→r (t)))

À
(58)

and expand the field in a Taylor series

Bx (
−→r (t)) =

µ
Bx (0, 0, 0, t) +

∂Bx
∂x

¯̄̄̄
o

x (t) +
∂Bx
∂y

¯̄̄̄
o

y (t) +
∂Bx
∂z

¯̄̄̄
o

z (t)

¶
+

+

µ
∂2Bx
∂x2

¯̄̄̄
o

x2 (t) +
∂2Bx
∂y2

¯̄̄̄
o

y2 (t) +
∂2Bx
∂z2

¯̄̄̄
o

z2 (t)

¶
+

µ
∂2Bx
∂x∂y

¯̄̄̄
o

y(t)x (t) +
∂2Bx
∂y∂z

¯̄̄̄
o

z (t) y (t) +
∂2Bx
∂z∂x

¯̄̄̄
o

x (t) z (t)

¶
+

µ
∂3Bx
∂x3

¯̄̄̄
o

x3 (t) +
∂3Bx
∂y3

¯̄̄̄
o

y3 (t) + ....

¶
(similarly for By). Concentrating on the first and last terms in (58) and noting
that there are no correlations between any functions f(xi, vi) and g (xj , vj) we
findX
xi=x,y

¿µ
∂Bxi
∂xi

¯̄̄̄
o

xi (t) +
∂2Bxi
∂x2i

¯̄̄̄
o

x2i (t) +
∂3Bx
∂x3i

¯̄̄̄
o

x3i (t) ...

¶
vxi (t− τ)− {(t)⇔ (t− τ)}

À
where the second term is obtained from the first by interchanging (t) and (t− τ).
By symmetry we see that

­
x2i (t) vxi (t− τ)

®
= 0 so that the next contribut-

ing term will be proportional to

∂3Bx
∂x3i

¯̄̄̄
o

­
x3i (t) vxi (t− τ)

®
The first order term will be proportional to

∂Bx
∂x

+
∂By
∂y

= −∂Bz
∂z
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We see that the condition

∂3Bxi
∂x3i

¯̄̄̄
o

R2 ¿ ∂Bxi
∂xi

¯̄̄̄
o

or
R2

L2
¿ 1

will insure that the higher order terms can be neglected. In the extreme case
considered by Harris and Pendlebury, [16], this condition is strongly violated so
our method cannot be applied since the higher order terms remain significant.

6 Discussion
We have derived the analytic form of the (2 dimensional) velocity autocorre-
lation function (vcf) for particles moving in a specularly reflecting cylindrical
vessel. As the vcf determines the position-velocity correlation function (pvcf)
we have calculated the Fourier transform of this latter function thus obtaining
the frequency shift for a single group of trajectories characterized by the angle
α. Our results duplicate the analytic result found in [10] by direct solution of
the classical Bloch equations. We then show how the analytic formula for single
trajectories can be extended to take into account gas collisions and obtain (after
integrating over trajectories) the linear in E frequency shift for a single velocity
which has been studied previously, our results agreeing with those obtained by
numerical simulation of the pvcf with collisions in [11]. We then perform an av-
erage over the Maxwell velocity distribution using the temperature dependent
collision times appropriate for He3 diffusing in superfluid He4 and obtain the
temperature dependence of the frequency shift in this case. Figures 4 and 5,
which are based on an exact average over the Maxwell distribution of the He3

velocities, imply that one should be able to control the effect to high degree.
Due to the heavy mass and slow velocity of the He3, Baym and Ebner [17]

conclude that the phonon scattering on He3 is predominantly elastic. Single
phonon absorption is kinematically forbidden on a single He3 and can only
take place as a result of He3 − He3 collisions which will be negligible for the
low He3 densities considered here. Thus our approach, where we calculate the
correlation function for an ensemble of trajectories with constant He3 velocity
and then average the result over the velocity distribution should be an excellent
approximation.
In addition we have shown that by varying the gradients to larger values

it will be possible to measure the spectrum of the velocity correlation function
directly, thus allowing a precise determination of the frequency dependence of
the frequency shift under the exact experimental conditions. and have discussed
the conditions under which the frequency shift can be shown to depend only on
the volume average of ∂Bz/∂z.

7 Appendix A
For a general orbit the velocity autocorrelation function is not periodic. How-
ever, using the form (15) for the correlation function, we can calculate its Fourier
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transform straighforwardly:

Ψ(α,ω) =
v2

π

X
l=0,1,2...

⎛⎜⎝Al (l+1)τwZ
lτw

cos(ωt)dt+Bl

(l+1)τwZ
lτw

t

τw
cos(ωt)dt

⎞⎟⎠ . (59)

Now (δ = ωτw)

(l+1)τwZ
lτw

cos(ωt)dt =
sin((l + 1)δ)− sin(lδ)

ω
, (60)

(l+1)τwZ
lτw

t

τw
cos(ωt)dt =

(l + 1) sin((l + 1)δ)− l sin(lδ)
ω

+
cos((l + 1)δ)− cos(lδ)

ωδ
,

(61)
We separate out the terms in (59), according to whether they come from sines
or cosines in (60) or (61).
Taking the sine terms first we have

((l + 1) cos(2lα)− l cos(2 (l + 1)α)) (sin((l + 1) δ)− sin(lδ))−
(cos(2 (l + 1)α)− cos 2lα) ((l + 1) (sin((l + 1) δ)− l sin(lδ))
= sin((l + 1) δ) (cos 2 (l + 1)α)− sin(lδ) cos(2lα), (62)

the sine terms in Ψ (α,ω) are

Ψs (α,ω) =
v2

πω

∞X
l=0

(sin((l + 1) δ) cos(2 (l + 1)α)− sin(lδ) cos(2lα))

=
v2

πω

NX
l=0

(f (l + 1)− f(l)) = v2

πω

⎛⎜⎜⎜⎜⎝
f (1)− f (0)+
f (2)− f (1)+

. . .+
f (N)− f (N − 1)+
f (N + 1)− f (N)

⎞⎟⎟⎟⎟⎠
=
v2

πω
f (N + 1) =

v2

πω
sin((N + 1) δ) cos(2 (N + 1)α). (63)

Turning to the cosine terms we have

Ψc (α,ω) =
v2

πωδ

∞X
l=0

Bl (cos((l + 1) δ)− cos(lδ)) =

=
v2

πωδ

Ã
NX
l=0

Bl cos((l + 1) δ)−
NX
l=0

Bl cos(lδ)

!

=
v2

πωδ

Ã
BN cos((N + 1) δ)−B0 +

NX
l=1

(Bl−1 −Bl) cos(lδ)
!
, (64)
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where

Bl−1 −Bl = 2 cos(2lα)− cos(2(l − 1)α)− cos(2(l + 1)α)
= 2 cos(2lα)(1− cos(2α)) = 4 sin2 α cos(2lα).

Then

Ψc (α,ω) =
v2

πωδ

Ã
1− cos 2α+BN cos((N + 1) δ) + 4 sin2 α

NX
l=1

cos(lδ) cos(2lα)

!
,

(65)

h(δ,α) =
NX
l=1

cos(lδ) cos(2lα) =
1

2

NX
l=1

(cos(l (δ + 2α)) + cos(l (δ − 2α)))

=
1

2

Ã
sin
¡¡
N + 1

2

¢
(δ + 2α)

¢
2 sin (δ+2α)2

+
sin
¡¡
N + 1

2

¢
(δ − 2α)

¢
2 sin (δ−2α)2

− 1
!

(66)

except when δ ± 2α = 2πn in which case h(δ,α) = N/2.
So (we will take the limit as N →∞)

lim
N→∞

sin(N + 1
2)x

sin 12x
= lim
N→∞

µ
sinNx cos 12x

sin 12x
+ cosNx

¶
= lim
N→∞

µ
sinNx cos 12x

sin 12x

¶
= 0

except when x = 2πm,

lim
N→∞

µ
sinNx cos 12x

sin 12x

¶
=

∞X
m=−∞

2πδ (x− 2πm) . (67)

As a result (59) becomes (δ = ωτw)

Ψ (α,ω) =
v2

πω2τw
sin2 α

∞X
m=−∞

(2πδ (ωτw + 2α− 2πm) + 2πδ (ωτw − 2α− 2πm)) .

(68)

Using δ (ωτw + 2α− 2πm) = 1
τw
δ
³
ω + 2α−2πm

τw

´
we have finally

Ψ (α,ω) =
2v2 sin2 α

ω2τ2w

∞X
m=−∞

µ
δ

µ
ω +

2α− 2πm
τw

¶
+ δ

µ
ω − 2α+ 2πm

τw

¶¶

=
2v2 sin2 α

ω2τ2w

∞X
m=−∞

¡
δ
¡
ω − ω+m(α)

¢
+ δ

¡
ω − ω−m(α)

¢¢
, (69)

where ω±m(α) =
2(±α+πm)

τw
.
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8 Appendix B
Using the formula [18]

cot θ =
1

θ
+

θ

π

Ã ∞X
n=−∞

!0
1

n (θ − nπ) =
∞X

n=−∞

1

θ − nπ , (70)

¡P0 means n = 0, excluded
¢
one gets:

cot θ − cotϕ
ϕ− θ

=
+∞X

n=−∞

1

(πn− ϕ)(πn− θ)
. (71)

After differentiation with respect to ϕ we obtain:

+∞X
n=−∞

1

(πn− ϕ)2(πn− θ)
=

1

(ϕ− θ) sin2 ϕ
− cot θ − cotϕ

(ϕ− θ)2
. (72)

References
[1] Weinberg, S. Proc. XXVI Inter. Conf. on High Energy Physics (Dallas,

Texas) summary talk

[2] Pendlebury, JM and Hinds EA, NIM in Physics Research A440, 471 (2000)

[3] Golub, R and Lamoreaux, SK, Physics Reports, 237, 1 (1994),

Harris, PG et al , PRL 82, 904 (1999),

LANL EDM collaboration: ”A new search for the neutron electric dipole
moment”, Los Alamos Report LA-UR 02-2331 (2002).

[4] Behr, JA et al, Eur. Phys. J. A25, 685 (2005)

[5] Berg, GPA et al, Nuclear Physics A721, 1107c (2003)

Schulte, E et al, 35th Meeting of the Division of Atomic, Molecular and
Optical Physics, May 25-29, 2004, Tuscon AZ

Ahmad I et al, http://www-mep.phy.anl.gov/atta/research/radiumedm.html

Guest JR et al, Abstract KB.00011 2nd Joint Meeting of the Nuclear Physics
Division of the APS and the Physical Society of Japan, Maui, Hawaii, Sept
18-22 (2005)

[6] Nuss-Warren et al, NIM in Physics Research A533, 275 (2004),

Abstrct KB.00010, 2nd Joint Meeting of the Nuclear Physics Division of the
APS and the Physical Society of Japan, Maui, Hawaii, Sept 18-22 (2005)

23



[7] Rosenberry MA and Chupp TE, PRL 86, 0031-9007 (2000)

Yoshimi A et al, Physics Letters, A304, 13 (2002) and

Abstract JB.00009, 2nd Joint Meeting of the Nuclear Physics Division of the
APS and the Physical Society of Japan, Maui, Hawaii, Sept 18-22 (2005)

[8] Jacobs JP et al, Phys Rev A52, 3521 (1995)

[9] Commins, ED; Am. J. Phys. 59, 1077 (1991)

[10] Pendlebury, JM et al; Phys. Rev. A70, 032102 (2004)

[11] Lamoreaux, SK and Golub, R; Phys. Rev A71, 032104 (2005)

[12] LANL EDM collaboration: ”A new search for the neutron electric dipole
moment”, Los Alamos Report LA-UR 02-2331 (2002).

[13] Lamoreaux, SK et al ; Europhys Lett. 58, 718 (2002)

[14] McGregor, DD, Phys Rev A41, 2631 (1990)

[15] Papoulis, A, Probability, Random Variables and Stochastic Processes, Mc-
Graw Hill, NY (1965)

[16] Harris, PG and Pendlebury, JM, arxiv.org: physics/0510134, ct. 2005,
Phys Rev A73, 014101 (2006)

[17] Baym, G and Ebner, C; Phys. Rev. 164, 235 (1967)

[18] Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Series and Products,
Academic Press, 1965, 1.421.3, p. 36.

Bromwich, T.J.I. . An Introduction to the theory of infinite series, Second
edition,Macmillan, 1942, p.218, (A3, A4)
Many formulae of this type are derived in: Chrystal, G., Algebra, an ele-

mentary text book for higher classes of secondary schools and for colleges. Part
II, Second Edition, 1900, chapter XXX.

24


