
ALPIDE Software - User manual

Markus Keil, Felix Reidt

rev. 3, June 20, 2018

This manual describes the software used to perform standard tests of the
ALPIDE chip with different readout boards and in different setups (single chip
with DAQ board, HICs or staves with MOSAIC board...). The manual is in-
tended as a quick start guide to get the ALPIDE software installed and perform
the most important tests via the command line interface. For a description on
the software structure and how to implement your own test applications, please
refer to the developer’s manual .

1 Installation and First Steps

1.1 Prerequisites

The software is currently supported to run only on CentOS CERN 7. This refer-
ence installations are used to test software after every commit to the repository.

• CentOS CERN 7:

yum install -y gcc gcc-c++ make cmake cmake3 tar zlib wget

subversion clang \

git libusb1-devel tinyxml-devel qt5-qtbase-devel krb5-

workstation cern-get-sso-cookie

yum install -y centos-release-scl

yum update -y

yum install -y llvm-toolset-7 devtoolset-7

wget -O /opt/root.tar.gz \

https://root.cern.ch/download/root_v6.14.00.Linux-centos7-

x86_64-gcc4.8.tar.gz

cd /opt/ ; tar xzfv root.tar.bz

ROOT has to be loaded using

source /opt/root/bin/thisroot.sh .

Do not install ROOT using yum as the packages are broken!

Activate the llvm-toolset-7 and devtoolset-7:

source scl_source enable llvm-toolset-7

source scl_source enable devtoolset-7

1



For other operation systems, please see https://gitlab.cern.ch/alice-its-alpide-software/
alice-its-docker-containers. Please note that we cannot support other op-
erating systems that CentOS CERN 7.

1.2 Installation

The software is available in a gitlab repository:

https://gitlab.cern.ch/alice-its-alpide-software/new-alpide-software

To check it out for the first time use

git clone https://username@gitlab.cern.ch/alice-its-alpide-software/new-

alpide-software.git

with your user name. Note that your account needs to be added to a list
of users in order to being able to access the repository. Versions are updated
regularly, make sure you have checked out the latest version. After the clone
you will find the software in a directory new-alpide-software, an additional
subdirectory analysis contains standard macros to analyse the data.

Preferably, the software is compiled using a cmake-based build flow. For
details see the README.md in the software repository.

LEGACY build: The standard software is compiled using

make

The libraries which are necessary for the GUI or EUDAQ are compiled using

make lib && make lib_analysis

The GUI can be compiled using

cd GUI

qmake -makefile #qmake-qt5 on SLC6 and CC7

make

and can be run by invoking

source ./env.sh

./GUI

In order to establish connection with the database Kerberos needs to be config-
ured. In CC7 the configuration can be done as below

sudo cp new-alpide-alpide-software/Doc/etc/krb5.conf /etc/krb5.conf

After the configuration the user needs to create a ticket. This is done by using
the credentials as following

kinit <service account>

The user can check whether a ticket was created or not and until when it is
valid, with the command

klist

Once the ticket expires (after 3 days e.g.) the user needs to create a new one as
before by using knit

2

https://gitlab.cern.ch/alice-its-alpide-software/alice-its-docker-containers
https://gitlab.cern.ch/alice-its-alpide-software/alice-its-docker-containers


Executing Tests
After compiling the software package you will find a certain number of standard
tests, described below, in the form of individual executables. Each executable
performs a specific test once and, if applicable, writes the output data in a
text file in the subdirectory Data. The settings of the chip(s), readout board(s)
and the scan itself can be modified in the config file Config.cfg. Some of the
available parameters are described below, for a more detailed description of the
syntax and the available parameters please refer to the comments in the config
file itself.

Executing Tests with the DAQ Board
To execute tests with the DAQ board setup the FX3 chip has to be config-
ured. The procedure and the necessary files are identical to the old pALPIDEfs-
software:

./download_fx3 -t RAM -i SlaveFifoSync.img

In case you have not performed tests with the DAQ board before you can
download the necessary files from the directory fx3 in the repository https://
gitlab.cern.ch/alice-its-alpide-software/pALPIDEfs-software. You can then com-
pile the tool to configure the FX3 chip (execute build mac.sh or build linux.sh,
resp., in the directory fx3).

2 Setup Definition

The standard tests of the ALPIDE software, provided in command line appli-
cations, work in the same way for different types of setups. There are several
predefined setups that can be selected via the config file. Each of these pre-
defined setup types implements a readout board (DAQ or MOSAIC), a certain
number of chips with predefined chip IDs and mapping of chips to the data lines
and command interfaces of the MOSAIC board.

Several config-file switches exist to modify these pre-defined setups, e.g. to
assign different chip IDs, command interfaces or data receivers to individual
chips.

The currently available setups are the following:

1. Single chip: a setup with a single chip connected to the DAQ board is
selected by the config-file switch:

DEVICE CHIP

In this case the chip has the chip-ID 16 (OB Master), which is the standard
configuration for single chip tests. If needed this can be changed by adding
a switch CHIPID 0 x (Since there is only one chip in the setup the index
0 can also be omitted.)

3



2. Single chip with MOSAIC: to test a single chip with the MOSAIC board
the switch

DEVICE CHIPMOSAIC

has to be used. In this case the software assumes a chip mounted on
a carrier with SAMTEC connector, which is connected through an IB
Firefly-Eyespeed adapter to the MOSAIC. The default chip ID is 16. In
case a different setup is used, mappings of control and data lines need to
be changed using the switches CONTROLINTERFACE 0 x and RECEIVER 0

y, substituting the appropriate values for x and y.

3. Inner Barrel HIC: test of an inner barrel HIC is done using the switch

DEVICE IBHIC

This assumes an inner barrel HIC with 9 chips with chip IDs ranging
from 0 to 8. The HIC is supposed to be connected to the MOSAIC via a
standard IB Firefly-Eyespeed adapter. Again all basic settings (mapping
and chip IDs) can be changed.

4. Outer Barrel HIC: test of an outer barrel HIC is done using the switch

DEVICE OBHIC

This assumes an outer barrel HIC with 14 chips with chip IDs ranging from
16 to 22 and from 24 to 30. The The HIC is supposed to be connected
to the MOSAIC via a standard OB Firefly-Eyespeed adapter. Again all
basic settings (mapping and chip IDs) can be changed. When changing
individual chip settings, note that the index of the config-file switch refers
to the running index and not to the chip ID. These are identical for the
IB, but not for the OB HIC. The correspondence between chip index and
(default) chip ID is shown in the following table:

Index 0 1 2 ... 6 7 8 ... 13
Chip ID 16 17 18 ... 22 24 25 ... 30

This numbering scheme corresponds to a module ID of 1. In a future
implementation it will be possible to change this via config file, currently
this can already be done by changing the individual chip IDs.

5. Outer Barrel Half-Stave: The structure for an outer barrel half-stave is
prepared with the device HALFSTAVE, however this device type requires
in addition the number of modules, e.g. for a fully mounter outer layer
half-stave:

DEVICE HALFSTAVE

NMODULES 7

4



The prepared setup then contains NMODULES modules with 14 chips each
and ascending module IDs 0 ... NMODULES + 1. If the module IDs are to
be changed, this currently has to be done chipwise, however modulewise
switches are under preparation.

Chip Enabling / Disabling
By default all defined chips are enabled for configuration and scans. For all
multi-chip devices single chips can be disabled in the config file by adding a line
ENABLED n 0 to disable chip n. In addition the software checks before execution
of the actual test whether an enabled chip responds to the command interface.
If this is not the case the chip is auto-disabled. In case of the OB module the
daisy chain is established after this procedure, skipping all disabled chips 1.

3 Tests

This section describes the standalone test programs provided with the ALPIDE
software. Each test is executed by running an individual command line exe-
cutable. Configurations of test parameters (like number of mask stages, number
of injections etc.) can be set in the config file Config.cfg. If the test generates
output data this is written to the subdirectory Data

3.1 FIFO Test

The FIFO test is a quick test to check the communication with the chips’ control
interfaces. It writes three different bit patterns (0x0000, 0xffff and 0x5555)
into each cell of the end-of-column FIFOs, reads them back and checks the
correctness of the readback value. The test is executed by running

./test_fifo

The test will print on screen the numbers of errors for each chip (seperately
for each pattern) and at the end the sum of errors for all tested chips. (If for
debugging purposes output of the individual errors is needed the program has
to be recompiled setting the variable bool Verbose in main fifo.cpp to true).

3.2 On-chip DAC Scan (DAQ board only)

The output of the on-chip DACs can be connected to monitoring pins of the
ALPIDE chip and measured by ADCs on the DAQ board. The DAC Scan
measures the characteristics of all on-chip DACs. The test is started by running

./test_dacscan

For each DAC it loops over the values from 0 to 255 and measures the output
values. The measured values are written into one file for each DAC.

1Note that it is currently not possible to read out a daisy chain with the corresponding
master disabled

5



3.3 Digital Scan

The digital scan generates a digital pulse in a number of pixels and reads the
hits out. It is started with the command

./test_digital

The number of injections and the number of injected pixels is configurable
with the parameters NINJ, PIXPERREGION, NMASKSTAGES in the config file (see
also the comments in the box below).

The output data is written into a file DigitalScan.dat, each line has the
format

Doublecol Address NHits

with Doublecol ranging from 0 to 511, Address from 0 to 1023 (Address is
the address as described in the ALPIDE manual, not the row number).

Analysis Macro
In the subdirectory analysis you can find the macro Hitmap.C, which can be
used to visualize the output data of the digital scan. If the macro is invoked in
the form

.x Hitmap.C (<filename>, <number of injections>)

it draws a hitmap of the given chip and returns the numbers of pixels that have
registered 0 hits or more / less hits than injections. If the second parameter is
omitted, only the hitmap is drawn.

General remarks on scans:

• Mask stages: All injection-based scans (digital, analogue and threshold)
work on a certain number of pixels at a time. This number of pixels
is configurable by the parameter PIXPERREGION in the config file, which
gives the number of pixels per region (!) that is injected simultaneously.
(A value of 1 corresponds to 32 pixels per chip. The maximum value is
32, which corresponds to a complete row.) After the required number of
injections has been done the scan moves to the next set of pixels. The
number of such mask stages that is performed is configurable with the
parameter NMASKSTAGES. In order to scan the entire chip the mask has to
be staged 16384 / PIXPERREGION times, a lower number accordingly leads
to a percentage < 100% of scanned pixels.

• Output files: due to the large amount of data in particular for threshold
scans, output data is written only for pixels with > 0 hits. In case of
multichip devices, one output file per chip is created.

6



3.4 Threshold Scan

The threshold scan performs analogue injections, looping over the charge. For
each charge point 50 injections are performed. The command is

./test_threshold

The output file ThresholdScan.dat contains the raw data, i.e. the number of
hits for each charge point, in the format

Doublecol Address Charge NHits

In addition to the parameters present for the digital scan, for the threshold scan
also the charge range can be configured in the config file; the default setting
ranges from 0 to 50 DAC units.

Analysis Macro
In the subdirectory analysis you can find the macro FitThresholds.C, which
is used to fit the s-curves for the scanned pixels. For speed reasons it should be
used in the compiled form

.x FitThresholds.C+ (<filename>)

The fitted values are written in an output file FitValues... .dat in the
format doublecol address thresh noise chisq, which can be visualized in
form of a threshold map with the macro ThresholdMap.C in the same directory.

3.5 Noise Occupancy

The scan gives a selectable number of random triggers and returns the number
of hits. The command is

./test_noiseocc

The output file format is identical to the digital scan.

Analysis Macro
The macro NoiseOccupancyRawToHisto in the subdirectory analysis can be
used to prepare a histogram with the noise occupancy as a function of the
number of masked pixels. The path to the file, which is to be analysed, has
to be given as a parameter. Note that the macro assumes a certain number
of triggers, which is read from a config file in case of the DAQ board. If the
MOSAIC is used this config file does not exist and the macro has to be adjusted
accordingly (i.e. remove the reading of the config file and set the variable n trg

manually to the correct number of triggers). This will be adjusted in a future
version.

7



3.6 Source Scan

A dedicated source scan is currently not implemented, however by adjusting the
strobe length the noise occupancy scan can be used to perform a simple source
scan (without single event information). The hitmap macro can then be used
to show the hit data.

8


	Installation and First Steps
	Prerequisites
	Installation

	Setup Definition
	Tests
	FIFO Test
	On-chip DAC Scan (DAQ board only)
	Digital Scan
	Threshold Scan
	Noise Occupancy
	Source Scan


