Physical Interpretation for the Generalized Parton Distributions $H\left(x, 0,-\Delta_{\perp}^{2}\right)$ and $E\left(x, 0,-\Delta_{\perp}^{2}\right)$
 or: What DVCS has to do with the distribution of partons in the transverse plane

Matthias Burkardt
burkardt@nmsu.edu

New Mexico State University
Las Cruces, NM, 88003, U.S.A.

Outline

- Motivation
- Deep-inelastic scattering (DIS)
- Generalized parton distributions (GPDs)
- Probabilistic interpretation of GPDs
- $H\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow q\left(x, \mathbf{b}_{\perp}\right)$
- $\tilde{H}\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \Delta q\left(x, \mathbf{b}_{\perp}\right)$
- $E\left(x, 0,-\Delta_{\perp}^{2}\right) \longrightarrow \perp$ displacement of quark distributions
- Summary

Motivation:

(see talk by A. Belitski)

- Interesting observation: X.Ji, PRL78,610(1997)

$$
\left\langle J_{q}\right\rangle=\frac{1}{2} \int_{0}^{1} d x x\left[H_{q}(x, 0,0)+E_{q}(x, 0,0)\right]
$$

$$
\text { DVCS } \Leftrightarrow \text { GPDs } \Leftrightarrow \vec{J}_{q}
$$

\hookrightarrow lots of works about GPDs
\hookrightarrow GPDs very useful tool linking variety of observables

- But: what other "physical information" about the nucleon can we obtain by measuring/calculating GPDs?

DIS

light-cone coordinates:

$$
\begin{aligned}
& x^{+}=\left(x^{0}+x^{3}\right) / \sqrt{2} \\
& x^{-}=\left(x^{0}-x^{3}\right) / \sqrt{2}
\end{aligned}
$$

DIS related to correlations along light-cone

$$
q\left(x_{B j}\right)=\int \frac{d x^{-}}{2 \pi}\langle P| \bar{q}\left(0^{-}, \mathbf{0}_{\perp}\right) \gamma^{+} q\left(x^{-}, \mathbf{0}_{\perp}\right)|P\rangle e^{i x^{-} x_{B j} P^{+}}
$$

No information about transverse position of partons!

Deeply Virtual Compton Scattering (DVCS)

$$
T^{\mu \nu}=i \int d^{4} z e^{i \bar{q} \cdot z}\left\langle p^{\prime}\right| T J^{\mu}\left(-\frac{z}{2}\right) J^{\nu}\left(\frac{z}{2}\right)|p\rangle
$$

$$
\stackrel{B j}{\longrightarrow} \frac{g_{\perp}^{\mu \nu}}{2} \int_{-1}^{1} d x\left(\frac{1}{x-\xi+i \varepsilon}+\frac{1}{x+\xi-i \varepsilon}\right) H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \quad+
$$

$$
\bar{q}=\left(q+q^{\prime}\right) / 2 \quad \Delta=p^{\prime}-p \quad x_{B j} \equiv-q^{2} / 2 p \cdot q=2 \xi(1+\xi)
$$

Generalized Parton Distributions (GPDs)

$$
\begin{aligned}
& \int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)|p\rangle=H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p) \\
&+ E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p) \\
& \int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x}\left\langle p^{\prime}\right| \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} \gamma_{5} q\left(\frac{x^{-}}{2}\right)|p\rangle \begin{aligned}
& =\tilde{H}\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} \gamma_{5} u(p) \\
& +\tilde{E}\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{\gamma_{5} \Delta^{+}}{2 M} u(p)
\end{aligned}
\end{aligned}
$$

back

Parton Interpretation

- x is mean long. momentum fraction carried by active quark
- $\Delta^{+}=2 \xi \bar{p}^{+}$, i.e. ξ is the long. momentum transfer on quark/target
- Δ_{\perp} is perp. momentum transfer on target
- In general no probabilistic interpretation since initial and final state not the same
- instead: interpretation as transition amplitude
- GPDs tell how much quarks with momentum fraction x (in IMF) contribute to form factor
- depend on 3 variables since 1.) x is 'measured'; 2.) LC correlation singles out z-direction

What is Physics of GPDs ?

- Definition of GPDs resembles that of form factors

$$
\begin{aligned}
& \left\langle p^{\prime}\right| \hat{O}|p\rangle=H\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \gamma^{+} u(p)+E\left(x, \xi, \Delta^{2}\right) \bar{u}\left(p^{\prime}\right) \frac{i \sigma^{+\nu} \Delta_{\nu}}{2 M} u(p) \\
& \quad \text { with } \hat{O} \equiv \int \frac{d x^{-}}{2 \pi} e^{i x^{-} \bar{p}^{+} x} \bar{q}\left(-\frac{x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)
\end{aligned}
$$

\hookrightarrow relation between PDFs and GPDs similar to relation between a charge and a form factor
\hookrightarrow If form factors can be interpreted as Fourier transforms of charge distributions in position space, what is the analogous physical interpretation for GPDs ?

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, \xi, t)$	$?$

Form Factors vs. GPDs

operator	forward matrix elem.	off-forward matrix elem.	position space
$\bar{q} \gamma^{+} q$	Q	$F(t)$	$\rho(\vec{r})$
$\int \frac{d x^{-} e^{i x p^{+}} x^{-}}{4 \pi} \bar{q}\left(\frac{-x^{-}}{2}\right) \gamma^{+} q\left(\frac{x^{-}}{2}\right)$	$q(x)$	$H(x, 0, t)$	$q\left(x, \mathbf{b}_{\perp}\right)$

$q\left(x, \mathbf{b}_{\perp}\right)=$ impact parameter dependent PDF

Physical Interpretation for the Generalized Parton Distributions $H\left(x, 0,-\Delta_{\perp}^{2}\right)$ and $E\left(x, 0,-\Delta_{\perp}^{2}\right)-\mathrm{p} .10 / 55$

Impact parameter dependent PDF

- define state that is localized in \perp position:

$$
\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \lambda\right\rangle \equiv \mathcal{N} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle
$$

Note: \perp boosts in IMF form Galilean subgroup
\Rightarrow this state has $\mathbb{R}_{\perp} \equiv \sum_{i} x_{i} \mathrm{~b}_{\perp, i}=0_{\perp}$
(cf.: working in CM frame in nonrel. physics)

- define impact parameter dependent PDF

$$
q\left(x, \mathrm{~b}_{\perp}\right) \equiv \int \frac{d x^{-}}{4 \pi}\left\langle p^{+}, \mathbf{0}_{\perp}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x}
$$

- use translational invariance to relate to same matrix element that appears in def. of GPDs

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right) \equiv \int d x^{-}\left\langle p^{+}, \mathbf{R}_{\perp}=0_{\perp}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbb{R}_{\perp}=0_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
& \quad=|\mathcal{N}|^{2} \int d^{2} \mathbf{p}_{\perp} \int d^{2} \mathbf{p}_{\perp}^{\prime} \int d x^{-}\left\langle p^{+}, \mathbf{p}_{\perp}^{\prime}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{p}_{\perp}\right\rangle e^{i x p^{+} x^{-}}
\end{aligned}
$$

- use translational invariance to relate to same matrix element that appears in def. of GPDs

$$
\begin{gathered}
q\left(x, \mathbf{b}_{\perp}\right) \equiv \int d x^{-}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
=|\mathcal{N}|^{2} \int d^{2} \mathbf{p}_{\perp} \int d^{2} \mathbf{p}_{\perp}^{\prime} \int d x^{-}\left\langle p^{+}, \mathbf{p}_{\perp}^{\prime}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathrm{~b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathrm{~b}_{\perp}\right)\left|p^{+}, \mathbf{p}_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
=|\mathcal{N}|^{2} \int d^{2} \mathbf{p}_{\perp} \int d^{2} \mathbf{p}_{\perp}^{\prime} \int d x^{-}\left\langle p^{+}, \mathbf{p}_{\perp}^{\prime}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, 0_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, 0_{\perp}\right)\left|p^{+}, \mathbf{p}_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
\times e^{i \mathrm{~b}_{\perp} \cdot\left(\mathrm{p}_{\perp}-\mathrm{p}_{\perp}^{\prime}\right)}
\end{gathered}
$$

- use translational invariance to relate to same matrix element that appears in def. of GPDs

$$
\begin{gathered}
q\left(x, \mathbf{b}_{\perp}\right) \equiv \int d x^{-}\left\langle p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
=|\mathcal{N}|^{2} \int d^{2} \mathbf{p}_{\perp} \int d^{2} \mathbf{p}_{\perp}^{\prime} \int d x^{-}\left\langle p^{+}, \mathbf{p}_{\perp}^{\prime}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{p}_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
=|\mathcal{N}|^{2} \int d^{2} \mathbf{p}_{\perp} \int d^{2} \mathbf{p}_{\perp}^{\prime} \int d x^{-}\left\langle p^{+}, \mathbf{p}_{\perp}^{\prime}\right| \bar{\psi}\left(-\frac{x^{-}}{2}, 0_{\perp}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}, 0_{\perp}\right)\left|p^{+}, \mathbf{p}_{\perp}\right\rangle e^{i x p^{+} x^{-}} \\
\left.=|\mathcal{N}|^{2} \int d^{2} \mathbf{p}_{\perp} \int d^{2} \mathbf{p}_{\perp}^{\prime} H\left(x, 0,-\left(e^{\prime}-\mathbf{p}_{\perp}\right)^{\prime}\right) e^{2}\right) e_{\perp} \mathbf{b}_{\perp} \cdot\left(\mathbf{p}_{\perp-\mathbf{p}_{\perp}^{\prime}}\right)
\end{gathered}
$$

$$
q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H\left(x,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}
$$

Physical Interpretation for the Generalized Parton Distributions $H\left(x, 0,-\Delta_{\perp}^{2}\right)$ and $E\left(x, 0,-\Delta_{\perp}^{2}\right)-\mathrm{p} .14 / 55$

- $q\left(x, \mathbf{b}_{\perp}\right)$ has physical interpretation of a density

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right) \geq 0 \text { for } x>0 \\
& q\left(x, \mathbf{b}_{\perp}\right) \leq 0 \text { for } x<0
\end{aligned}
$$

Discussion

- GPDs allow simultaneous determination of longitudinal momentum and transverse position of partons

$$
q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} H\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}
$$

- $q\left(x, \mathbf{b}_{\perp}\right)$ has interpretation as density (positivity constraints!)

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & \sim\left\langle p^{+}, \mathbf{0}_{\perp}\right| b^{\dagger}\left(x p^{+}, \mathbf{b}_{\perp}\right) b\left(x p^{+}, \mathbf{b}_{\perp}\right)\left|p^{+}, \mathbf{0}_{\perp}\right\rangle \\
& \left.=\left|b\left(x p^{+}, \mathbf{b}_{\perp}\right)\right| p^{+}, \mathbf{0}_{\perp}\right\rangle\left.\right|^{2} \geq 0
\end{aligned}
$$

\hookrightarrow positivity constraint on models

- Nonrelativistically such a result not surprising! Absence of relativistic corrections to identification $H\left(x, 0,-\Delta_{\perp}^{2}\right) \xrightarrow{F T} q\left(x, \mathbf{b}_{\perp}\right)$ due to Galilean subgroup in IMF
- \mathbf{b}_{\perp} distribution measured w.r.t. $\mathbf{R}_{\perp}^{C M} \equiv \sum_{i} x_{i} \mathbf{r}_{i, \perp}$ \hookrightarrow width of the \mathbf{b}_{\perp} distribution should go to zero as $x \rightarrow 1$, since the active quark becomes the \perp center of momentum in that limit! $\hookrightarrow H(x, t)$ must become t-indep. as $x \rightarrow 1$.
- very similar results for impact parameter dependent polarized quark distributions

$$
\Delta q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} \tilde{H}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}
$$

- Use intuition about nucleon structure in position space to make predictions for GPDs: large x : quarks from localized valence 'core', small x : contributions from larger ' meson cloud' \hookrightarrow expect a gradual increase of the t-dependence (\perp size) of $H(x, 0, t)$ as x decreases
- small x, expect tranverse size to increase
- model: $H_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)=q(x) e^{-a \Delta_{\perp}^{2}(1-x) \ln \frac{1}{x}}$. (consistent with Regge behavior at small x and quark counting for $x \rightarrow 1$)

Other topics

- The physics of $E(x, 0, t)$
- QCD evolution
- extrapolating to $\xi=0$

Summary

- DVCS allows probing GPDS

$$
\int \frac{d x^{-}}{2 \pi} e^{i x p^{+} x^{-}}\left\langle p^{\prime}\right| \bar{\psi}\left(-\frac{x^{-}}{2}\right) \gamma^{+} \psi\left(\frac{x^{-}}{2}\right)|p\rangle
$$

- GPDs resemble both PDFs and form factors: defined through matrix elements of light-cone correlation, but $\Delta \equiv p^{\prime}-p \neq 0$.
- t-dependence of GPDs at $\xi=0$ (only \perp momentum transfer) \Rightarrow Fourier transform of impact parameter dependent parton distributions $q\left(x, \mathbf{b}_{\perp}\right)$
\hookrightarrow knowledge of GPDs for $\xi=0$ allows determining distribution of partons in the \perp plane

$$
\begin{aligned}
& q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \mathbf{b}_{\perp}}{\left(2 \pi^{2}\right.} H\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} \\
& \Delta q\left(x, \mathbf{b}_{\perp}\right)=\int \frac{d^{2} \mathbf{b}_{\perp}}{(2 \pi)^{2}} \tilde{H}\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}
\end{aligned}
$$

\hookrightarrow GPDs provide novel information about nonperturbative parton structure of nucleons: distribution of partons in \perp plane $L_{x} \sim\left\langle y p_{z}-z p_{y}\right\rangle$ only lowest \mathbf{b}_{\perp} moment of that information

- $q\left(x, \mathbf{b}_{\perp}\right), \Delta q\left(x, \mathbf{b}_{\perp}\right)$ have probabilistic interpretation, e.g. $q\left(x, \mathbf{b}_{\perp}\right)>0$ for $x>0$
- universal prediction: large x partons more localized in \mathbf{b}_{\perp} than small x partons
- $\frac{\Delta_{\perp}}{2 M} E\left(x,-\Delta_{\perp}^{2}\right)$ describes how the momentum distribution of unpolarized partons in the \perp plane gets transversely shifted (distorted) if is nucleon polarized in \perp direction..
- published in: M.B., PRD 62, 71503 (2000), hep-ph/0105324, and hep-ph/0207047; see also $(\xi \neq 0)$ M.Diehl, hep-ph/0205208.

The physics of $E\left(x, 0,-\Delta_{\perp}^{2}\right)$

So far: only unpolarized (or long. polarized) nucleon
In general, use ($\Delta^{+}=0$)

$$
\begin{aligned}
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \uparrow\rangle & =H\left(x, 0,-\Delta_{\perp}^{2}\right) \\
\int \frac{d x^{-}}{4 \pi} e^{i p^{+} x^{-} x}\langle P+\Delta, \uparrow| \bar{q}(0) \gamma^{+} q\left(x^{-}\right)|P, \downarrow\rangle & =-\frac{\Delta_{x}-i \Delta_{y}}{2 M} E\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

Consider nucleon polarized in x direction (in IMF) $|X\rangle \equiv\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \uparrow\right\rangle+\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}, \downarrow\right\rangle$.
\hookrightarrow quark distribution for this state

$$
q_{X}\left(x, \mathbf{b}_{\perp}\right)=q\left(x, \mathbf{b}_{\perp}\right)-\frac{1}{2 M} \frac{\partial}{\partial b_{y}} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} E\left(x,-\Delta_{\perp}^{2}\right) e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}}
$$

$q_{X}\left(x, \mathbf{b}_{\perp}\right)$ gets shifted (distorted) compared to longitudinally polarized nucleons

- mean displacement (\perp flavor dipole moment)

$$
d_{y}^{q} \equiv \int d x \int d^{2} \mathbf{b}_{\perp} q_{X}\left(x, \mathbf{b}_{\perp}\right) b_{y}=\frac{1}{2 M} \int d x E_{q}(x, 0,0)
$$

with

$$
\kappa_{u / d} \equiv F_{2}^{u / d}(0)=\mathcal{O}(1) \quad \Rightarrow \quad d_{y}^{q}=\mathcal{O}(0.1 \mathrm{fm})
$$

- CM for flavor q shifted relative to CM for whole proton by

$$
\int d x \int d^{2} \mathbf{b}_{\perp} q_{X}\left(x, \mathbf{b}_{\perp}\right) x b_{y}=\frac{1}{2 M} \int_{{ }^{2}} d x x E_{q}(x, 0,0)
$$

Physical Interpretation for the Generalized Parton Distributions $H\left(x, 0,-\Delta_{\perp}^{2}\right)$ and $E\left(x, 0,-\Delta_{\perp}^{2}\right)-\mathrm{p} .24 / 55$

- $q_{X}\left(x, \mathbf{b}_{\perp}\right) \geq 0$
\hookrightarrow positivity constraint for FT of $E\left(x, 0,-\Delta_{\perp}^{2}\right)$:

$$
\left|\frac{\nabla_{b_{\perp}}}{2 M} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} E\left(x,-\Delta_{\perp}^{2}\right)\right|<q\left(x, \mathbf{b}_{\perp}\right)
$$

- polarized GPD with helicity fip \Rightarrow

$$
\left|\frac{\nabla_{b_{\perp}}}{2 M} \int \frac{d^{2} \Delta_{\perp}}{(2 \pi)^{2}} e^{-i \mathbf{b}_{\perp} \cdot \Delta_{\perp}} E\left(x,-\Delta_{\perp}^{2}\right)\right|^{2}<\left|q\left(x, \mathbf{b}_{\perp}\right)\right|^{2}-\left|\Delta q\left(x, \mathbf{b}_{\perp}\right)\right|^{2}
$$

physical origin for \perp distortion

Comparison of a non-rotating sphere that moves in z direction with a sphere that spins at the same time around the z axis and a sphere that spins around the x axis When the sphere spins around the x axis, the rotation changes the distribution of momenta in the z direction (adds/subtracts to velocity for $y>0$ and $y<0$ respectively). For the nucleon the resulting modifi cation of the (unpolarized) momentum distribution is described by $E(x, t)$.

Physical Interpretation for the Generalized Parton Distributions $H\left(x, 0,-\Delta_{\perp}^{2}\right)$ and $E\left(x, 0,-\Delta_{\perp}^{2}\right)-\mathrm{p} .26 / 55$
simple model for $E_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)$

$$
\begin{aligned}
& E_{u}\left(x, 0,-\Delta_{\perp}^{2}\right)=\frac{\kappa_{u}}{2} H_{u}\left(x, 0,-\Delta_{\perp}^{2}\right) \\
& E_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)=\kappa_{d} H_{d}\left(x, 0,-\Delta_{\perp}^{2}\right)
\end{aligned}
$$

with $H_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)=q(x) e^{-a \Delta_{\perp}^{2}(1-x) \ln \frac{1}{x}}$ and

$$
\kappa_{u}=2 \kappa_{p}+\kappa_{n}=1.673 \quad \kappa_{d}=2 \kappa_{n}+\kappa_{p}=-2.033 .
$$

satisfies $\int d x E_{q}(x, 0,0)=\kappa_{q}$

Application: \perp hyperon polarization

model for hyperon polarization in $p p \rightarrow Y+X$ ($Y \in \Lambda, \Sigma, \Xi$) at high energy:

- peripheral scattering
- $s \bar{s}$ produced in overlap region, i.e. on "inside track"
\hookrightarrow if Y deflected to left then s produced on left side of Y (and vice versa)
\hookrightarrow if $\kappa_{s}>0$ then intermediate state has better overlap with final state Y that has spin down (looking into the flight direction)
\hookrightarrow remarkable prediction: $\vec{P}_{Y} \sim-\kappa_{s}^{Y} \vec{p}_{P} \times \vec{p}_{Y}$.
- $\mathrm{SU}(3)$ analysis for κ_{s}^{B} yields (assuming $\left.\left|\kappa_{s}^{p}\right| \ll\left|\kappa_{u}^{p}\right|,\left|\kappa_{d}^{p}\right|\right)$

$$
\begin{aligned}
\kappa_{s}^{\Lambda} & =\kappa^{p}+\kappa_{s}^{p}=1.79+\kappa_{s}^{p} \\
\kappa_{s}^{\Sigma} & =\kappa^{p}+2 \kappa^{n}+\kappa_{s}^{p}=-2.03+\kappa_{s}^{p} \\
\kappa_{s}^{\Xi} & =2 \kappa^{p}+\kappa^{n}+\kappa_{s}^{p}=1.67+\kappa_{s}^{p} .
\end{aligned}
$$

\hookrightarrow expect (polarization \mathcal{P} w.r.t. $\vec{p}_{P} \times \vec{P}_{Y}$)

$$
\mathcal{P}_{\Lambda}<0 \quad \mathcal{P}_{\Sigma}>0 \quad \mathcal{P}_{\Xi}<0
$$

- exp. result:
$0<\mathcal{P}_{\Sigma^{0}} \approx \mathcal{P}_{\Sigma^{-}} \approx \mathcal{P}_{\Sigma^{+}} \approx-\mathcal{P}_{\Lambda} \approx-\mathcal{P}_{\Xi^{0}} \approx-\mathcal{P}_{\Xi^{-}}$
back

Figure 1: $P+P(\bar{P}) \longrightarrow Y+\bar{Y}$ where the incoming P (from bottom) is deflected to the left during the reaction. The $s \bar{s}$ pair is assumed to be produced roughly in the overlap region, i.e. on the left 'side' of the Y.

Figure 2: Schematic view of the transverse distortion of the s quark distribution (in grayscale) in the transverse plane for a transversely polarized hyperon with $\kappa_{s}^{Y}>0$. The view is (from the rest frame) into the direction of motion (i.e. momentum into plane) for a hyperon that moves with a large momentum. In the case of spin down (a), the s-quarks get distorted towards the left, while the distortion is to the right for the case of spin up (b).

extrapolating to $\xi=0$

- bad news: $\xi=0$ not directly accessible in DVCS since long. momentum transfer necessary to convert virtual γ into real γ
- good news: moments of GPDs have simple ξ-dependence (polynomials in ξ) \hookrightarrow should be possible to extrapolate!
even moments of $H(x, \xi, t)$:

$$
\begin{aligned}
H_{n}(\xi, t) & \equiv \int_{-1}^{1} d x x^{n-1} H(x, \xi, t)=\sum_{i=0}^{\left[\frac{n-1}{2}\right]} A_{n, 2 i}(t) \xi^{2 i}+C_{n}(t) \\
& =A_{n, 0}(t)+A_{n, 2}(t) \xi^{2}+\ldots+A_{n, n-2}(t) \xi^{n-2}+C_{n}(t) \xi^{n}
\end{aligned}
$$

i.e. for example

$$
\int_{-1}^{1} d x x H(x, \xi, t)=A_{2,0}(t)+C_{2}(t) \xi^{2} .
$$

- For $n^{\text {th }}$ moment, need $\frac{n}{2}+1$ measurements of $H_{n}(\xi, t)$ for same t but different ξ to determine $A_{n, 2 i}(t)$.
- GPDs @ $\xi=0$ obtained from $H_{n}(\xi=0, t)=A_{n, 0}(t)$
- similar prodecure exists for moments of \tilde{H}
back

QCD evolution

So far ignored! Can be easily included because

- For $t \ll Q^{2}$, leading order evolution t-independent
- For $\xi=0$ evolution kernel for GPDs same as DGLAP evolution kernel
likewise:
- impact parameter dependent PDFs evolve such that different \mathbf{b}_{\perp} do not mix (as long as \perp spatial resolution much smaller than Q^{2})
\hookrightarrow above results consistent with QCD evolution:

$$
\begin{aligned}
& H\left(x, 0,-\Delta_{\perp}^{2}, Q^{2}\right)=\int d^{2} b_{\perp} q\left(x, \mathbf{b}_{\perp}, Q^{2}\right) e^{-i \mathbf{b}_{\perp} \Delta_{\perp}} \\
& \tilde{H}\left(x, 0,-\Delta_{\perp}^{2}, Q^{2}\right)=\int d^{2} b_{\perp} \Delta q\left(x, \mathbf{b}_{\perp}, Q^{2}\right) e^{-i \mathbf{b}_{\perp} \Delta_{\perp}}
\end{aligned}
$$

where QCD evolution of $H, \tilde{H}, q, \Delta q$ is described by DGLAP and is independent on both \mathbf{b}_{\perp} and Δ_{\perp}^{2}, provided one does not look at scales in \mathbf{b}_{\perp} that are smaller than $1 / Q$.
back

suppression of crossed diagrams

a)

b)

Flow of the large momentum q through typical diagrams contributing to the forward Compton amplitude. a) 'handbag' diagrams; b) 'cat's ears' diagram. Diagram b) is suppressed at large q due to the presence of additional propagators.

Form factor vs. charge distribution (non-rel.)

- define state that is localized in position space (center of mass frame)

$$
|\vec{R}=\overrightarrow{0}\rangle \equiv \mathcal{N} \int d^{3} \vec{p}|\vec{p}\rangle
$$

- define charge distribution (for this localized state)

$$
\rho(\vec{r}) \equiv\langle\vec{R}=\overrightarrow{0}| j^{0}(\vec{r})|\vec{R}=\overrightarrow{0}\rangle
$$

- use translational invariance to relate to same matrix element that appears in def. of form factor

$$
\begin{aligned}
\rho(\vec{r}) \equiv & \equiv\langle\vec{R}=\overrightarrow{0}| j^{0}(\vec{r})|\vec{R}=\vec{o}\rangle \\
& =|\mathcal{N}|^{2} \int d^{3} \vec{p} \int d^{3} \vec{p}\langle\vec{p}| j^{0}(\vec{r})|\vec{p}\rangle \\
& \left.=|\mathcal{N}|^{2} \int d^{3} \vec{p} \int d^{3} \vec{p}\left\langle\vec{p}^{\prime}\right| j^{0}(\overrightarrow{0}) \mid \vec{p}\right) e^{i \vec{r} \cdot\left(\vec{p}-\vec{p}^{\prime}\right)}, \\
& =|\mathcal{N}|^{2} \int d^{3} \vec{p} \int d^{3} \vec{p} F\left(-\left(\mathrm{p}_{\perp}^{\prime}-\mathrm{p}_{\perp}\right)^{2}\right) e^{i \mathbf{b}_{\perp} \cdot\left(\mathbf{p}_{\perp}-\mathbf{p}_{\perp}^{\prime}\right)}
\end{aligned}
$$

$$
\rho(\vec{r})=\int \frac{d^{3} \vec{\Delta}}{(2 \pi)^{3}} F\left(-\vec{\Delta}^{2}\right) e^{-i \vec{r}_{\perp} \cdot \Delta_{\perp}}
$$

density interpretation of $q\left(x, \mathbf{b}_{\perp}\right)$

- express quark-bilinear in twist-2 GPD in terms of light-cone 'good' component $\psi_{(+)} \equiv \frac{1}{2} \gamma^{-} \gamma^{+} \psi$

$$
\bar{\psi}^{\prime} \gamma^{+} \psi=\bar{\psi}_{(+)}^{\prime} \gamma^{+} \psi_{(+)}=\sqrt{2} \psi_{(+)}^{\prime \dagger} \psi_{(+)} .
$$

- expand $\psi_{(+)}$in terms of canonical raising and lowering operators

$$
\begin{aligned}
& \psi_{(+)}\left(x^{-}, \mathbf{x}_{\perp}\right)=\int_{0}^{\infty} \frac{d k^{+}}{\sqrt{4 \pi k^{+}}} \int \frac{d^{2} \mathbf{k}_{\perp}}{2 \pi} \sum_{s} \\
& \quad \times\left[u_{(+)}(k, s) b_{s}\left(k^{+}, \mathbf{k}_{\perp}\right) e^{-i k x}+v_{(+)}(k, s) d_{s}^{\dagger}\left(k^{+}, \mathbf{k}_{\perp}\right) e^{i k x}\right]
\end{aligned}
$$

with usual (canonical) equal light-cone time x^{+} anti-commutation relations, e.g.

$$
\left\{b_{r}\left(k^{+}, \mathbf{k}_{\perp}\right), b_{s}^{\dagger}\left(q^{+}, \mathbf{q}_{\perp}\right)\right\}=\delta\left(k^{+}-q^{+}\right) \delta\left(\mathbf{k}_{\perp}-\mathbf{q}_{\perp}\right) \delta_{r s}
$$ and the normalization of the spinors is such that

$$
\bar{u}_{(+)}(p, r) \gamma^{+} u_{(+)}(p, s)=2 p^{+} \delta_{r s} .
$$

Note: $\bar{u}_{(+)}\left(p^{\prime}, r\right) \gamma^{+} u_{(+)}(p, s)=2 p^{+} \delta_{r s}$ for $p^{+}=p^{\prime+}$, one finds for $x>0$

$$
\begin{gathered}
q\left(x, \mathbf{b}_{\perp}\right)=\mathcal{N}^{\prime} \sum_{s} \int \frac{d^{2} \mathbf{k}_{\perp}}{2 \pi} \int \frac{d^{2} \mathbf{k}_{\perp}^{\prime}}{2 \pi}\left\langle p^{+}, \mathbf{0}_{\perp}\right| b_{s}^{\dagger}\left(x p^{+}, \mathbf{k}_{\perp}^{\prime}\right) b_{s}\left(x p^{+}, \mathbf{k}_{\perp}\right)\left|p^{+}, \mathbf{0}_{\perp}\right\rangle \\
\times e^{i \mathbf{b}_{\perp} \cdot\left(\mathbf{k}_{\perp}-\mathbf{k}_{\perp}^{\prime}\right)}
\end{gathered}
$$

- Switch to mixed representation:
momentum in longitudinal direction position in transverse direction

$$
\tilde{b}_{s}\left(k^{+}, \mathbf{x}_{\perp}\right) \equiv \int \frac{d^{2} \mathbf{k}_{\perp}}{2 \pi} b_{s}\left(k^{+}, \mathbf{k}_{\perp}\right) e^{i \mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}}
$$

$$
\begin{aligned}
q\left(x, \mathbf{b}_{\perp}\right) & =\sum_{s}\left\langle p^{+}, \mathbf{0}_{\perp}\right| \tilde{b}_{s}^{\dagger}\left(x p^{+}, \mathbf{b}_{\perp}\right) \tilde{b}_{s}\left(x p^{+}, \mathbf{b}_{\perp}\right) \mid p^{+} \\
& \left.=\sum_{s}\left|\tilde{b}_{s}\left(x p^{+}, \mathbf{b}_{\perp}\right)\right| p^{+}, \mathbf{0}_{\perp}\right\rangle\left.\right|^{2} \\
& \geq 0 .
\end{aligned}
$$

Boosts in nonrelativistic QM

$$
\vec{x}^{\prime}=\vec{x}+\vec{v} t \quad t^{\prime}=t
$$

purely kinematical (quantization surface $t=0$ inv.)
$\hookrightarrow 1$. boosting wavefunctions very simple

$$
\Psi_{\vec{v}}\left(\vec{p}_{1}, \vec{p}_{2}\right)=\Psi_{\overrightarrow{0}}\left(\vec{p}_{1}-m_{1} \vec{v}, \vec{p}_{2}-m_{2} \vec{v}\right) .
$$

2. dynamics of center of mass

$$
\vec{R} \equiv \sum_{i} x_{i} \vec{r}_{i} \quad \text { with } \quad x_{i} \equiv \frac{m_{i}}{M}
$$

decouples from the internal dynamics

Relativistic Boosts

$t^{\prime}=\gamma\left(t+\frac{v}{c^{2}} z\right), \quad z^{\prime}=\gamma(z+v t) \quad \mathbf{x}_{\perp}^{\prime}=\mathbf{x}_{\perp}$ generators satisfy Poincaré algebra:

$$
\begin{aligned}
{\left[P^{\mu}, P^{\nu}\right] } & =0 \\
{\left[M^{\mu \nu}, P^{\rho}\right] } & =i\left(g^{\nu \rho} P^{\mu}-g^{\mu \rho} P^{\nu}\right) \\
{\left[M^{\mu \nu}, M^{\rho \lambda}\right] } & =i\left(g^{\mu \lambda} M^{\nu \rho}+g^{\nu \rho} M^{\mu \lambda}-g^{\mu \rho} M^{\nu \lambda}-g^{\nu \lambda} M^{\mu \rho}\right)
\end{aligned}
$$

rotations: $M_{i j}=\varepsilon_{i j k} J_{k}, \quad$ boosts: $M_{i 0}=K_{i}$.

Galilean subgroup of \perp boosts

 introduce generator of \perp 'boosts':$$
B_{x} \equiv M^{+x}=\frac{K_{x}+J_{y}}{\sqrt{2}} \quad B_{y} \equiv M^{+y}=\frac{K_{y}-J_{x}}{\sqrt{2}}
$$

Poincaré algebra \Longrightarrow commutation relations:

$$
\begin{array}{rlrl}
{\left[J_{3}, B_{k}\right]} & =i \varepsilon_{k l} B_{l} & {\left[P_{k}, B_{l}\right]} & =-i \delta_{k l} P^{+} \\
{\left[P^{-}, B_{k}\right]} & =-i P_{k} & {\left[P^{+}, B_{k}\right]} & =0 \\
\text { with } k, l \in\{x, y\}, \varepsilon_{x y}=-\varepsilon_{y x}=1, \text { and } \varepsilon_{x x}=\varepsilon_{y y}=0 .
\end{array}
$$

Together with $\left[J_{z}, P_{k}\right]=i \varepsilon_{k l} P_{l}$, as well as

$$
\begin{aligned}
& {\left[P^{-}, P_{k}\right]=\left[P^{-}, P^{+}\right]=\left[P^{-}, J_{z}\right]=0} \\
& {\left[P^{+}, P_{k}\right]=\left[P^{+}, B_{k}\right]=\left[P^{+}, J_{z}\right]=0 .}
\end{aligned}
$$

Same as commutation relations among generators of nonrel. boosts, translations, and rotations in x-y plane, provided one identifies

$$
\begin{aligned}
P^{-} & \longrightarrow \text { Hamiltonian } \\
\mathbf{P}_{\perp} & \longrightarrow \text { momentum in the plane } \\
P^{+} & \longrightarrow \text { mass } \\
L_{z} & \longrightarrow \text { rotations around } z \text {-axis } \\
\mathbf{B}_{\perp} & \longrightarrow \text { generator of boosts in the plane },
\end{aligned}
$$

Consequences

- many results from NRQM carry over to \perp boosts in IMF, e.g.
- \perp boosts kinematical

$$
\begin{aligned}
\Psi_{\Delta_{\perp}}\left(x, \mathbf{k}_{\perp}\right) & =\Psi_{0_{\perp}}\left(x, \mathbf{k}_{\perp}-x \Delta_{\perp}\right) \\
\Psi_{\Delta_{\perp}}\left(x, \mathbf{k}_{\perp}, y, \mathbf{l}_{\perp}\right) & =\Psi_{0_{\perp}}\left(x, \mathbf{k}_{\perp}-x \Delta_{\perp}, y, \mathbf{l}_{\perp}-y \Delta_{\perp}\right)
\end{aligned}
$$

- Transverse center of momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{\perp, i}$ plays role similar to NR center of mass, e.g. $\left|\psi_{l o c}\right\rangle \equiv \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}\right\rangle$ corresponds to state with $\mathbf{R}_{\perp}=\mathbf{0}_{\perp}$.
back

\perp Center of Momentum

- field theoretic definition

$$
p^{+} \mathbf{R}_{\perp} \equiv \int d x^{-} \int d^{2} \mathbf{x}_{\perp} T^{++}(x) \mathbf{x}_{\perp}=M^{+\perp}
$$

- $M^{+\perp}=\mathbf{B}^{\perp}$ generator of transverse boosts
- parton representation:

$$
\mathbf{R}_{\perp}=\sum_{i} x_{i} \mathbf{r}_{\perp, i}
$$

($x_{i}=$ momentum fraction carried by $i^{\text {th }}$ parton)
back

Poincaré algebra:

$$
\begin{aligned}
{\left[P^{\mu}, P^{\nu}\right] } & =0 \\
{\left[M^{\mu \nu}, P^{\rho}\right] } & =i\left(g^{\nu \rho} P^{\mu}-g^{\mu \rho} P^{\nu}\right) \\
{\left[M^{\mu \nu}, M^{\rho \lambda}\right] } & =i\left(g^{\mu \lambda} M^{\nu \rho}+g^{\nu \rho} M^{\mu \lambda}-g^{\mu \rho} M^{\nu \lambda}-g^{\nu \lambda} M^{\mu \rho}\right)
\end{aligned}
$$

rotations: $M_{i j}=\varepsilon_{i j k} J_{k}, \quad$ boosts: $M_{i 0}=K_{i}$. back

Galilean subgroup of \perp boosts

 introduce generator of \perp 'boosts':$$
B_{x} \equiv M^{+x}=\frac{K_{x}+J_{y}}{\sqrt{2}} \quad B_{y} \equiv M^{+y}=\frac{K_{y}-J_{x}}{\sqrt{2}}
$$

Poincaré algebra \Longrightarrow commutation relations:

$$
\begin{aligned}
{\left[J_{3}, B_{k}\right] } & =i \varepsilon_{k l} B_{l} & {\left[P_{k}, B_{l}\right] } & =-i \delta_{k l} P^{+} \\
{\left[P^{-}, B_{k}\right] } & =-i P_{k} & {\left[P^{+}, B_{k}\right] } & =0
\end{aligned}
$$

$$
\text { with } k, l \in\{x, y\}, \varepsilon_{x y}=-\varepsilon_{y x}=1, \text { and } \varepsilon_{x x}=\varepsilon_{y y}=0 \text {. }
$$

back

Together with $\left[J_{z}, P_{k}\right]=i \varepsilon_{k l} P_{l}$, as well as

$$
\begin{aligned}
& {\left[P^{-}, P_{k}\right]=\left[P^{-}, P^{+}\right]=\left[P^{-}, J_{z}\right]=0} \\
& {\left[P^{+}, P_{k}\right]=\left[P^{+}, B_{k}\right]=\left[P^{+}, J_{z}\right]=0 .}
\end{aligned}
$$

Same as commutation relations among generators of nonrel. boosts, translations, and rotations in x-y plane, provided one identifies

$$
\begin{aligned}
P^{-} & \longrightarrow \text { Hamiltonian } \\
\mathbf{P}_{\perp} & \longrightarrow \text { momentum in the plane } \\
P^{+} & \longrightarrow \text { mass } \\
L_{z} & \longrightarrow \text { rotations around } z \text {-axis } \\
\mathbf{B}_{\perp} & \longrightarrow \text { generator of boosts in the plane },
\end{aligned}
$$

Consequences

- many results from NRQM carry over to \perp boosts in IMF, e.g.
- \perp boosts kinematical

$$
\begin{aligned}
\Psi_{\Delta_{\perp}}\left(x, \mathbf{k}_{\perp}\right) & =\Psi_{0_{\perp}}\left(x, \mathbf{k}_{\perp}-x \Delta_{\perp}\right) \\
\Psi_{\Delta_{\perp}}\left(x, \mathbf{k}_{\perp}, y, \mathbf{l}_{\perp}\right) & =\Psi_{0_{\perp}}\left(x, \mathbf{k}_{\perp}-x \Delta_{\perp}, y, \mathbf{l}_{\perp}-y \Delta_{\perp}\right)
\end{aligned}
$$

- Transverse center of momentum $\mathbf{R}_{\perp} \equiv \sum_{i} x_{i} \mathbf{r}_{\perp, i}$ plays role similar to NR center of mass, e.g. $\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle \equiv \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}\right\rangle$ corresponds to state with $\mathbf{R}_{\perp}=\mathbf{0}_{\perp}$.
back

Proof that $\mathbf{B}_{\perp}\left|p^{+}, \mathbf{R}_{\perp}=\mathbf{0}_{\perp}\right\rangle=0$

- Use

$$
\begin{gathered}
e^{-i \mathbf{v}_{\perp} \cdot \mathbf{B}_{\perp}}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle=\left|p^{+}, \mathbf{p}_{\perp}+p^{+} \mathbf{v}_{\perp}, \lambda\right\rangle \\
\qquad e^{-i \mathbf{v}_{\perp} \cdot \mathbf{B}_{\perp}} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle=\int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle \\
\hookrightarrow \\
\mathbf{B}_{\perp} \int d^{2} \mathbf{p}_{\perp}\left|p^{+}, \mathbf{p}_{\perp}, \lambda\right\rangle=0
\end{gathered}
$$

back

Example

- Ansatz: $H_{q}\left(x, 0,-\Delta_{\perp}^{2}\right)=q(x) e^{-a \Delta_{\perp}^{2}(1-x) \ln \frac{1}{x}}$.

$$
q\left(x, \mathbf{b}_{\perp}^{2}\right)=q(x) \frac{1}{4 \pi a(1-x) \ln \frac{1}{x}} e^{-\frac{\mathrm{b}_{\perp}^{2}}{4(1-x) \ln \frac{1}{x}}}
$$

back
Physical Interpretation for the Generalized Parton Distributions $H\left(x, 0,-\Delta_{\perp}^{2}\right)$ and $E\left(x, 0,-\Delta_{\perp}^{2}\right)-$ p.55/55

