Baryon Resonances from a FLIC Fermion Action in Lattice QCD

Anthony G. Williams,

Sundance Bilson-Thompson, Frederic Bonnet, John Hedditch,

Ben Lasscock, Frank X. Lee*, Derek Leinweber,

Wally Melnitchouk**, James Zanotti, Jianbo Zhang

CSSM, University of Adelaide,

Jefferson Lab**,

George Washington University*

- Introduction to lattice QCD
- What are FLIC fermions?
 - Clover Fermions mean-field improved
 - non-perturbative improved

APE Smearing and Improvement of Lattice Operators

- Introduction to lattice QCD
- What are FLIC fermions?
 - Clover Fermions mean-field improved - non-perturbative improved

APE Smearing and Improvement of Lattice Operators

- Scaling Analysis of FLIC Fermions
 - Near continuum results at finite lattice spacing.
- Access to Light Quark Masses

 $m_{\pi}/m_{
ho} = 0.35$

- Introduction to lattice QCD
- What are FLIC fermions?
 - Clover Fermions mean-field improved - non-perturbative improved

APE Smearing and Improvement of Lattice Operators

- Scaling Analysis of FLIC Fermions
 - Near continuum results at finite lattice spacing.
- Access to Light Quark Masses

 $m_{\pi}/m_{
ho} = 0.35$

Baryon Resonance Phenomenology $\mathbb{I} N^* 1/2^+, N^* 1/2^-, N^* 3/2^+, N^* 3/2^-, \Delta^* 3/2^-, \Delta^* 1/2^{\pm}.$

- Introduction to lattice QCD
- What are FLIC fermions?
 - Clover Fermions mean-field improved - non-perturbative improved

APE Smearing and Improvement of Lattice Operators

- Scaling Analysis of FLIC Fermions
 - Near continuum results at finite lattice spacing.
- Access to Light Quark Masses

 $m_{\pi}/m_{
ho} = 0.35$

- Baryon Resonance Phenomenology $\mathbb{I} N^* 1/2^+, N^* 1/2^-, N^* 3/2^+, N^* 3/2^-, \Delta^* 3/2^-, \Delta^* 1/2^{\pm}.$
- Future Outlook

Introduction to lattice QCD

- Complete solution of QCD \equiv knowing all possible Minkowski space Green's functions of the theory.
- Implies for every possible combination of quark and gluon operators, $O[\hat{A}, \hat{\bar{q}}, \hat{q}]$, we need to know

$$\begin{split} \langle \Omega | \hat{T} \left(O[\hat{A}, \hat{\bar{q}}, \hat{q}] \right) | \Omega \rangle &= \frac{\int \mathcal{D}A \mathcal{D}\bar{q} \mathcal{D}q \, O[A, \bar{q}, q] \exp(iS[A, \bar{q}, q])}{\int \mathcal{D}A \mathcal{D}\bar{q} \mathcal{D}q \, \exp(iS[A, \bar{q}, q])} \\ &= \frac{\int \mathcal{D}A \, \det\left[S_F^{-1}[A] \right] \, O[A, S_F[A]] \exp(iS[A])}{\int \mathcal{D}A \, \det\left[S_F^{-1}[A] \right] \, \exp(iS[A])} \,, \end{split}$$

- Note that S[A] is the pure gluon (i.e., pure gauge) action.
- $|\Omega\rangle \equiv$ nonperturbative vacuum, $\hat{T} \equiv$ time-ordering operator, $S_F([A]; x, y) \equiv$ tree-level quark propagator in gluon field, A.

It is numerically convenient to work in Euclidean space, where all quantities are now Euclidean. So we need to know

$$\begin{split} \langle \Omega | \hat{T} \left(O[\hat{A}, \hat{\bar{q}}, \hat{q}] \right) | \Omega \rangle &\equiv \frac{\int \mathcal{D}A \mathcal{D}\bar{q} \mathcal{D}q \, O[A, \bar{q}, q] \exp(-S[A, \bar{q}, q])}{\int \mathcal{D}A \mathcal{D}\bar{q} \mathcal{D}q \, \exp(-S[A, \bar{q}, q])} \\ &= \frac{\int \mathcal{D}A O[A, S_F[A]] \det \left[S_F^{-1}[A] \right] \exp(-S[A])}{\int \mathcal{D}A \, \det \left[S_F^{-1}[A] \right] \exp(-S[A])} \end{split}$$

- There is one factor of $det[S_F^f[A]]$ for each quark flavor f, i.e., we use the notation $det[S_F^{-1}[A]] \equiv \prod_f det[S_F^f[A]]$.
- Can study many observables from Euclidean space.
- We will only sample gauge inequivalent A's and hence for observables (i.e., for color singlet $O[\hat{A}, \hat{q}, \hat{q}]) \Rightarrow$ won't have to bother with gauge fixing!

- The lattice approximates infinite Euclidean space by a four-dimensional discrete space-time lattice, where
 - $a \equiv$ lattice spacing, (typically $0.1 \sim 0.2$ fm).
 - N_s and N_t are number of lattice sites in space and time directions respectively.
 - **I** $L_s = N_s a$ and $L_t = N_t a$ are physical length of lattice in space and time directions respectively.

✓ $V = L_s^3 \times L_t \equiv$ physical lattice volume; $N_s^3 \times N_t \equiv$ lattice volume in lattice units.

- Introduce links, U_µ(x) ≡ U(x, x + aµ) ∈ SU(3), between sites in the Cartesian directions µ = 1, · · · , 4. Links replace the gluon fields A_µ(x) ≡ ∑⁸_{a=1} A^a_µ(x)(λ^a/2) ∈ SU(3).
- Links are parallel transport operators $U_{\mu}(x) = \hat{P} \exp\left(ig_s \int_x^{x+a\mu} dx' \cdot A(x')\right), \text{ where } \hat{P} \equiv \text{ path ordering.}$

- We can express the gauge field in terms of finite differences of links, i.e., we can always express $A_{\mu}(x)$ as $A_{\mu}([U], x)$.
- We can generate an ensemble of gauge field configurations, $\{U_1, \dots, U_{N_{cf}}\}$ weighted with the probability distribution $P[U] \propto \det[S_F^{-1}[U]] \exp(-S[U]) \equiv \prod_f \det[S_F^f[U]] \exp(-S[U]).$
 - Image: Will never have two gauge equivalent configurations in a finite ensemble ⇒ no gauge fixing needed.
 - Since we need $1 \ge P[U] \ge 0$ and since $\det[S_F^f[A]]$ is real, then we want to simulate with degenarate mass flavor pairs, (i.e., so that $\det[S_F^{-1}[U]] \equiv \prod_f \det[S_F^f[A]] \ge 0$).

Techniques exist for unpaired flavors, but are more difficult.

We frequently approximate $P[U] \propto \exp(-S[U])$, which omits the determinant and is equivalent to omitting all quark loops \Rightarrow this is called the quenched approximation.

Hence we can now evaluate the Euclidean Green's function for any color-singlet O[···] by simply taking its ensemble average

$$\begin{split} \langle \Omega | \hat{T} \left(O[\hat{A}, \hat{\bar{q}}, \hat{q}] \right) | \Omega \rangle &\equiv \langle O[U, S_F[U]] \rangle \\ &= \frac{\int \mathcal{D}U O[U, S_F[U]] \det \left[S_F^{-1}[U] \right] \exp(-S[U])}{\int \mathcal{D}U \det \left[S_F^{-1}[U] \right] \exp(-S[U])} \\ &= \lim_{V \to \infty} \lim_{a \to 0} \lim_{N_{cf} \to \infty} \frac{\sum_{i=1}^{N_{cf}} O[U_i, S_F[U_i]]}{\sum_{i=1}^{N_{cf}}} \\ &= \lim_{V \to \infty} \lim_{a \to 0} \lim_{N_{cf} \to \infty} \frac{1}{N_{cf}} \sum_{i=1}^{N_{cf}} O[U_i, S_F[U_i]] \end{split}$$

Observables from Euclidean Space

- We move from Minkowski space \rightarrow Euclidean space by the analytic continuation: $t \rightarrow -it_E$ or in a different notation $x^0 \rightarrow -ix_4$.
- Thus the Minkowski-space evolution operator, becomes the Euclidean-space version: $exp(-i\hat{H}t) → exp(-\hat{H}t_E)$.

Note that replacing t_E with $\beta \equiv 1/kT$ and taking the trace gives the partition function of statistical mechanics:

 $Z(\beta) \equiv \operatorname{tr}[\exp(-\beta \hat{H})] = \sum_{n} \exp(-\beta E_{n}).$

- Consider ordinary Quantum Mechanics in the presence of some conserved charge operator \hat{Q} . Since $[\hat{H}, \hat{Q}] = 0$ we have:
 - $\hat{H}|E_n^q\rangle = E_n|E_n^q\rangle$ and $\hat{Q}|E_n^q\rangle = q|E_n^q\rangle$, where E_n and q are the energy and charge e-values respectively.
 - ⇒ Hilbert space is divided up into charge sectors labelled by q, where *any* state $|\chi^q\rangle$ in the q charge sector can be written as: $|\chi^q\rangle = \sum_n c_n |E_n^q\rangle$ for some c_n .

Observables from Euclidean Space (contd)

- Let $|\Omega\rangle$ be the ground state (i.e., vacuum) of the system. Then $\hat{H}|\Omega\rangle = \hat{Q}|\Omega\rangle = 0$
- Define the Schrödinger picture operators $\hat{\chi}^q$ and $\hat{\chi}^q$ such that $\langle \chi^q | = \langle \Omega | \hat{\chi}^q$ and $| \chi^q \rangle = \hat{\chi}^q | \Omega \rangle.$
- In Euclidean space the Heisenberg picture operators are:

$$\hat{\chi^{q}}(t_{E}) \equiv \exp(+\hat{H}t_{E}) \, \hat{\chi^{q}} \, \exp(-\hat{H}t_{E})$$

$$\hat{\chi}^{q}(\boldsymbol{t}_{\boldsymbol{E}}) \equiv \exp(+\hat{H}\boldsymbol{t}_{\boldsymbol{E}})\,\hat{\chi}^{q}\,\exp(-\hat{H}\boldsymbol{t}_{\boldsymbol{E}}).$$

Then we can define the correlation function:

$$G(t_{E}) \equiv \langle \Omega | \hat{\chi}^{q}(t_{E}) \hat{\chi}^{q}(0) | \Omega \rangle = \langle \chi^{q} | \exp(-\hat{H}t_{E}) | \chi^{q} \rangle$$
$$= \sum_{n=0}^{\infty} |c_{n}|^{2} \exp(-E_{n}^{q}t_{E})$$

For large t_E can extract first few energies in the q charge sector, e.g., $E_0^q = \lim_{t_E \to \infty} (1/t_E) \ln G(t_E)$, etc.

Setting The Scale

Use the Static Quark Potential

$$V(\mathbf{r}) = V_0 + \sigma r - e\left[\frac{1}{\mathbf{r}}\right] + l\left(\left[\frac{1}{\mathbf{r}}\right] - \frac{1}{r}\right)$$

where $\sqrt{\sigma} = 440 {\rm MeV}$ and $\left[\frac{1}{{\bf r}}\right]$ denotes the tree-level lattice Coulomb term

$$\left[\frac{1}{\mathbf{r}}\right] = 4\pi \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \cos(\mathbf{k} \cdot \mathbf{r}) D_{00}(0, \mathbf{k}),$$

and $D_{00}(k)$ is the time-time component of the gluon propagator.

In the continuum limit,

$$\left[\frac{1}{\mathbf{r}}\right] \to \frac{1}{r}$$

Orion supercomputer

Baryon Resonances from a FLIC Fermion Action in Lattice QCD - p.11/58

Orion supercomputer

- The calculations reported here were carried out on the Orion supercomputer. Orion consists of
 - **40** Enterprise E420R Sun nodes
 - Each node has 4 Ultrasparc II 450 MHz processors
 - Each of the 160 processors has 1 GByte of RAM and 4 MBytes of cache
 - All 40 nodes are interconnected by both Myrinet and fast ethernet

Each node has a peak speed of 3.6 Gflops

- Orion has a total peak theoretical speed of 144 Gflops and has 160 GBytes of RAM and 640 MBytes of cache.
- Orion has a measured performance of 110 Gflops with the Linpack benchmark
- Here is a photo of Orion.

Naive Lattice Fermion Action

$$D = \gamma^{\mu} (\partial_{\mu} + i g A_{\mu}) ,$$

is discretized by:

Replacing the derivative with a discrete difference, and

- Including gauge links which
 - Encode the gluon field, A_{μ} , and
 - Maintain gauge invariance.

Naive Lattice Fermion Action

$$D = \gamma^{\mu} (\partial_{\mu} + i g A_{\mu}) ,$$

is discretized by:

Replacing the derivative with a discrete difference, and

- Including gauge links which
 - Encode the gluon field, A_{μ} , and
 - Maintain gauge invariance.

$$\bar{\psi} \not\!\!\!D \psi = \frac{1}{2a} \bar{\psi}(x) \sum_{\mu} \gamma_{\mu} \left[U_{\mu}(x) \psi(x+\hat{\mu}) - U_{\mu}^{\dagger}(x-\hat{\mu}) \psi(x-\hat{\mu}) \right].$$

For the continuum Dirac action is recovered in the limit $a \to 0$ by Taylor expanding the U_{μ} and $\psi(a + \hat{\mu})$ in powers of the lattice spacing a.

The Naive Action (2)

Hence we arrive at the simplest ("naive") lattice fermion action,

$$S_N = m_q \sum_x \bar{\psi}(x)\psi(x) + \frac{1}{2a} \sum_x \bar{\psi}(x)\gamma_\mu \left[U_\mu(x)\psi(x+\hat{\mu}) - U_\mu^{\dagger}(x-\hat{\mu})\psi(x-\hat{\mu}) \right].$$

The Naive Action (3)

While preserving chiral symmetry, encounters the fermion doubling problem (i.e., it gives rise to $2^d = 16$ flavours rather than one).

The Naive Action (3)

- While preserving chiral symmetry, encounters the fermion doubling problem (i.e., it gives rise to $2^d = 16$ flavours rather than one).
- This doubling problem is demonstrated by the inverse of the free field propagator (obtained by taking the fourier transform of the action with all $U_{\mu} = 1$).

$$S^{-1}(p) = m_q + \frac{i}{a} \sum_{\mu} \gamma_{\mu} \sin p_{\mu} a$$

which has 16 zeros within the Brillouin cell in the limit $m_q \rightarrow 0$. eg,

$$p_{\mu} = (0, 0, 0, 0)$$

= $(\pi/a, 0, 0, 0)$
= $(\pi/a, \pi/a, 0, 0)$, etc.

The Wilson Action

Wilson introduced an irrelevant (energy) dimension-five operator (the so-called Wilson term) to fix this problem,

$$M_W = m_0 + \sum_{\mu} \left(\gamma_{\mu} \, \nabla_{\mu} - \frac{1}{2} r a \Delta_{\mu} \right),$$

where

$$\nabla_{\mu}\psi(x) = \frac{1}{2a} [U_{\mu}(x)\psi(x+\hat{\mu}) - U_{\mu}^{\dagger}(x-\hat{\mu})\psi(x-\hat{\mu})]$$

and

$$\Delta_{\mu}\psi(x) = \frac{1}{a^2} [U_{\mu}(x)\psi(x+\hat{\mu}) + U_{\mu}^{\dagger}(x-\hat{\mu})\psi(x-\hat{\mu}) - 2\psi(x)].$$

The Wilson Action

- Wilson introduced an irrelevant (energy) dimension-five operator (the so-called Wilson term) to fix this problem,
- The Wilson action is (in terms of $U_{\mu}(x)$),

$$S_W = \left(m_q + \frac{4r}{a} \right) \sum_x \bar{\psi}(x) \psi(x)$$

+
$$\frac{1}{2a} \sum_{x,\mu} \bar{\psi}(x) \left[(\gamma_\mu - r) U_\mu(x) \psi(x + \hat{\mu}) - (\gamma_\mu + r) U_\mu^{\dagger}(x - \hat{\mu}) \psi(x - \hat{\mu}) \right]$$

which explicitly breaks chiral symmetry at $\mathcal{O}(a)$.

The Wilson Action (2)

▶ This action has large $\mathcal{O}(a)$ errors \rightarrow bad scaling.

The Wilson Action (2)

- ▶ This action has large $\mathcal{O}(a)$ errors \rightarrow bad scaling.
- The scaling properties of this Wilson action at finite a can be improved by introducing any number of irrelevant operators of increasing dimension which vanish in the continuum limit.
- In this manner, one can improve fermion actions at finite a by combining operators to eliminate $\mathcal{O}(a)$ and perhaps $\mathcal{O}(a^2)$ errors etc.

The Clover action introduces an additional irrelevant dimension-five operator to remove $\mathcal{O}(a)$ errors.

$$S_{SW} = S_W - \frac{iaC_{SW}r}{4}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x).$$

where C_{SW} is the clover coefficient which can be tuned to remove all $\mathcal{O}(a)$ artifacts.

The difficulty lies in determining the precise renormalization of C_{SW} in the interacting theory.

The Clover action introduces an additional irrelevant dimension-five operator to remove $\mathcal{O}(a)$ errors.

$$S_{SW} = S_W - \frac{iaC_{SW}r}{4}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x).$$

where C_{SW} is the clover coefficient which can be tuned to remove all $\mathcal{O}(a)$ artifacts.

The difficulty lies in determining the precise renormalization of C_{SW} in the interacting theory.

 $C_{\scriptscriptstyle SW}=1$ at tree-level.

The Clover action introduces an additional irrelevant dimension-five operator to remove $\mathcal{O}(a)$ errors.

$$S_{SW} = S_W - \frac{iaC_{SW}r}{4}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x).$$

where C_{SW} is the clover coefficient which can be tuned to remove all $\mathcal{O}(a)$ artifacts.

• The difficulty lies in determining the precise renormalization of C_{SW} in the interacting theory.

$$C_{SW} = rac{1}{u_0^3}$$
 mean-fi eld improved. $u_0 = \left(rac{1}{3}\mathcal{R}e\operatorname{tr}\langle U_{\mathrm{sq}}
angle
ight)^{1/4}$

The Clover action introduces an additional irrelevant dimension-five operator to remove $\mathcal{O}(a)$ errors.

$$S_{SW} = S_W - \frac{iaC_{SW}r}{4}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x).$$

where C_{SW} is the clover coefficient which can be tuned to remove all $\mathcal{O}(a)$ artifacts.

The difficulty lies in determining the precise renormalization of C_{SW} in the interacting theory.

$$C_{\scriptscriptstyle SW} = rac{1}{u_0^3}$$
 mean-fi eld improved.

$$u_0 = \left(\frac{1}{3}\mathcal{R}e\operatorname{tr}\langle U_{\mathrm{sq}}\rangle\right)^{1/4}$$

Insufficient to remove $\mathcal{O}(a)$ errors to all orders in g.

The Clover action introduces an additional irrelevant dimension-five operator to remove $\mathcal{O}(a)$ errors.

$$S_{SW} = S_W - \frac{iaC_{SW}r}{4}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x).$$

where C_{SW} is the clover coefficient which can be tuned to remove all $\mathcal{O}(a)$ artifacts.

- The difficulty lies in determining the precise renormalization of C_{SW} in the interacting theory.
- Non-perturbative $\mathcal{O}(a)$ improvement (ALPHA Collaboration) tune C_{SW} to all powers in g^2 .
- The NP-Improved Clover action displays excellent scaling.

Clover Scaling Edwards, Heller, Klassen, PRL 80:3448-3451, 1998

The Difficulties with NP Clover

- The Clover action is responsible for revealing the exceptional configuration problem.
- The quark propagator encounters singular behaviour
 - as the quark mass becomes light,
 - as the lattice spacing becomes large.
- Chiral symmetry breaking in the action shifts continuum zero modes into the negative mass region.
- Accessing the light-quark mass regime is
 - Computationally intensive.

Difficulties with NP Clover

- The single plaquette-based $F_{\mu\nu}$ has large $\mathcal{O}(a^2)$ errors.
- Constructing the topological charge via

$$Q = \sum_{x} q(x) = \sum_{x} \frac{g^2}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \operatorname{Tr} (F_{\mu\nu}(x) F_{\rho\sigma}(x))$$

- Implementing on smooth (cooled) configurations
- Reveals ~ 10% error in topological charge [F.D.R.Bonnet *et.al*, Phys.Rev.D62:094509,2000]

- Pioneered by Tom DeGrand, Anna Hasenfratz et al.
- Fat links are created by averaging or smearing the links
 With their nearest neighbours
 - In a gauge-invariant manner.

- Pioneered by Tom DeGrand, Anna Hasenfratz et al.
- Fat links are created by averaging or smearing the links
 With their nearest neighbours

In a gauge-invariant manner.

- A link is replaced with a sum of
 - $(1 \alpha) \text{ of the original link, and }$
 - \square $\alpha/6$ times its six neighbouring "staples"

- Pioneered by Tom DeGrand, Anna Hasenfratz et al.
- Fat links are created by averaging or smearing the links With their nearest neighbours
 - In a gauge-invariant manner.
- A link is replaced with a sum of
 - **Solution** (1α) of the original link, and
 - \square $\alpha/6$ times its six neighbouring "staples"
- The Smeared Link is projected back to SU(3) colour.

- Pioneered by Tom DeGrand, Anna Hasenfratz et al.
- Fat links are created by averaging or smearing the links With their nearest neighbours

In a gauge-invariant manner.

- A link is replaced with a sum of
 - **(** 1α) of the original link, and
 - \square $\alpha/6$ times its six neighbouring "staples"
- The Smeared Link is projected back to SU(3) colour.
- The process is repeated n times (n_{ape} sweeps).
- Pioneered by Tom DeGrand, Anna Hasenfratz et al.
- Fat links are created by averaging or smearing the links With their nearest neighbours

In a gauge-invariant manner.

- A link is replaced with a sum of
 - \square (1α) of the original link, and
 - \square $\alpha/6$ times its six neighbouring "staples"
- The Smeared Link is projected back to SU(3) colour.
- The process is repeated n times (n_{ape} sweeps).
- This process is called APE smearing.

Benefits

- The renormalisation of action improvement term coefficients such as C_{SW} is small.
- The exceptional configuration problem is reduced.

Benefits

- The renormalisation of action improvement term coefficients such as C_{SW} is small.
- The exceptional configuration problem is reduced.

Drawbacks

- gluon interactions at the scale of the cutoff are removed.
- One loses short-distance quark interactions.

Benefits

- The renormalisation of action improvement term coefficients such as C_{SW} is small.
- The exceptional configuration problem is reduced.

Drawbacks

- gluon interactions at the scale of the cutoff are removed.
- One loses short-distance quark interactions.
- The solution to these problems may be to work with two sets of links in the fermion action.

Benefits

- The renormalisation of action improvement term coefficients such as C_{SW} is small.
- The exceptional configuration problem is reduced.

Drawbacks

- gluon interactions at the scale of the cutoff are removed.
- One loses short-distance quark interactions.
- Relevant dimension-four operators are constructed with untouched Monte-Carlo generated links.
- Irrelevant operators are constructed with smeared fat links.

Mean-field improved Fat-Link Irrelevant Wilson action

$$S_{W}^{FL} = \left(m_{q} + \frac{4r}{a}\right) \sum_{x} \bar{\psi}(x)\psi(x) + \frac{1}{2a} \sum_{x,\mu} \bar{\psi}(x) \left[\gamma_{\mu} \left(\frac{U_{\mu}(x)}{u_{0}}\psi(x+\hat{\mu}) - \frac{U_{\mu}^{\dagger}(x-\hat{\mu})}{u_{0}}\psi(x-\hat{\mu})\right) - r\left(\frac{U_{\mu}^{FL}(x)}{u_{0}^{FL}}\psi(x+\hat{\mu}) + \frac{U_{\mu}^{FL^{\dagger}}(x-\hat{\mu})}{u_{0}^{FL}}\psi(x-\hat{\mu})\right)\right]$$

Mean-field improved Fat-Link Irrelevant Wilson action

$$S_{W}^{FL} = \left(m_{q} + \frac{4r}{a}\right) \sum_{x} \bar{\psi}(x)\psi(x) \\ + \frac{1}{2a} \sum_{x,\mu} \bar{\psi}(x) \left[\gamma_{\mu} \left(\frac{U_{\mu}(x)}{u_{0}}\psi(x+\hat{\mu}) - \frac{U_{\mu}^{\dagger}(x-\hat{\mu})}{u_{0}}\psi(x-\hat{\mu})\right) \\ - r\left(\frac{U_{\mu}^{FL}(x)}{u_{0}^{FL}}\psi(x+\hat{\mu}) + \frac{U_{\mu}^{FL^{\dagger}}(x-\hat{\mu})}{u_{0}^{FL}}\psi(x-\hat{\mu})\right)\right]$$

Mean-field improved Fat-Link Irrelevant Clover (FLIC) action

$$S_{SW}^{FL} = S_W^{FL} - \frac{iaC_{SW}r}{4(u_0^{FL})^4}\bar{\psi}(x)\sigma_{\mu\nu}F_{\mu\nu}\psi(x).$$

where $F_{\mu\nu}$ is constructed using fat-links.

FLIC Fermion Action

Solution Fat-link mean-field improvement parameter $u_0^{FL} \rightarrow 1$.

n	u_0^{FL}	$(u_0^{FL})^4$
0	0.889	0.624
4	0.997	0.986
12	0.999	0.997

FLIC Fermion Action

Solution Fat-link mean-field improvement parameter $u_0^{FL} \rightarrow 1$.

n	u_0^{FL}	$(u_0^{FL})^4$
0	0.889	0.624
4	0.997	0.986
12	0.999	0.997

Perturbative corrections are negligible after four sweeps.

FLIC Fermion Action

Fat-link mean-field improvement parameter $u_0^{FL} \rightarrow 1$.

n	u_0^{FL}	$(u_0^{FL})^4$
0	0.889	0.624
4	0.997	0.986
12	0.999	0.997

- Perturbative corrections are negligible after four sweeps.
- Mean-field improved estimate of coefficients is sufficient.
- Highly improved actions with many irrelevant operators (eg. D234) can be handled with confidence.
- Highly improved definitions of $F_{\mu\nu}$ involving terms up to u_0^8 may be used.

Lattice Simulations

- Calculations were performed using a mean-field improved, plaquette + rectangle, gauge action on a $16^3 \times 32$ lattice at $\beta = 4.60 \ (\beta = 6/g^2)$, with lattice spacing a = 0.122(1) fm.
 - Fixed boundary condition in time direction, ie.

 $U_t(\vec{x}, nt) = 0 \qquad \forall \vec{x}$

- The source was created at a space-time location of (x, y, z, t) = (1, 1, 1, 3).
- Gauge-invariant gaussian smearing was applied at the source to increase the overlap of the interpolating operators with the ground states.

The Lattices

eta	a(fm)	$L^3 \times T$	Length(fm)
4.38	0.165	$12^3 \times 24$	1.980
4.60	0.122	$12^3 \times 24$	1.464
4.60	0.122	$16^3 \times 32$	1.952
4.80	0.093	$16^3 \times 32$	1.488

- Chiral symmetry breaking in the action allows continuum zero modes of the Dirac operator to be shifted into the negative mass region.
 - The quark propagator encounters singular behaviour
 - as the quark mass becomes light,
 - **as the gauge fields become rough (** $a \rightarrow$ large).

- Chiral symmetry breaking in the action allows continuum zero modes of the Dirac operator to be shifted into the negative mass region.
- The quark propagator encounters singular behaviour
 - as the quark mass becomes light,
 - **as the gauge fields become rough (** $a \rightarrow$ large).
- Singularity position is configuration AND action dependent.

- Chiral symmetry breaking in the action allows continuum zero modes of the Dirac operator to be shifted into the negative mass region.
- The quark propagator encounters singular behaviour

as the quark mass becomes light,

as the gauge fields become rough ($a \rightarrow$ large).

- APE Smearing in FLIC helps by
 - Removing local lattice artefacts at the scale of the cutoff (dislocations) which give rise to spurious near zero modes.
 - Smoothing the gauge field and narrowing the distribution of near zero modes.

- Chiral symmetry breaking in the action allows continuum zero modes of the Dirac operator to be shifted into the negative mass region.
- The quark propagator encounters singular behaviour

as the quark mass becomes light,

as the gauge fields become rough ($a \rightarrow$ large).

- APE Smearing in FLIC helps by
 - Removing local lattice artefacts at the scale of the cutoff (dislocations) which give rise to spurious near zero modes.
 - Smoothing the gauge field and narrowing the distribution of near zero modes.

Twisted mass [hep-lat/0111048] reached $m_{\pi}/m_{\rho} = 0.47$ on a fine lattice (0.1fm)

Octet Baryons with Light Quark Masses

Chiral extrapolation (incl unquenching)

Estimate of physical limit using chiral extrapolation and unquenching phenomenology R. Young, D. Leinweber, A. Thomas, *et al.*

Current Simulations

- $20^3 \times 40$ at a = 0.134 fm
- **J** FLIC6 with 5-loop improved $F_{\mu\nu}$

Current Simulations

- $20^3 \times 40$ at a = 0.134 fm
- **J** FLIC6 with 5-loop improved $F_{\mu\nu}$

8 masses

$$\frac{m_{\pi}}{m_{\rho}} = 0.75 \Rightarrow \frac{m_{\pi}}{m_{\rho}} = 0.35$$

New Simulations with Light Quark Masses

Spectroscopy Issues

Why are lowest positive parity (Roper) excitations

 $N^{1/2+}(1440), \ \Delta^{3/2+}(1600), \ \Sigma^{1/2+}(1690), \ \dots$

lighter than the lowest negative parity states?

Spectroscopy Issues

Why are lowest positive parity (Roper) excitations

 $N^{1/2+}(1440), \ \Delta^{3/2+}(1600), \ \Sigma^{1/2+}(1690), \ \dots$

lighter than the lowest negative parity states?

- \longrightarrow channel coupling?
- \longrightarrow gluon rich?
- \longrightarrow "breathing modes"?

Spectroscopy Issues

Why are lowest positive parity (Roper) excitations

 $N^{1/2+}(1440), \ \Delta^{3/2+}(1600), \ \Sigma^{1/2+}(1690), \ \dots$

lighter than the lowest negative parity states?

- \longrightarrow channel coupling?
- \longrightarrow gluon rich?
- \longrightarrow "breathing modes"?
- What is the nature of Λ^{1/2−}(1405)?
 → Σπ channel coupling?
- What causes mass splitting between $\Lambda^{1/2}$ (1405) and $\Lambda^{3/2}$ (1520)?

Survey of N* Calculations

Leinweber

Phys. Rev. D 51 (1995) 6383

 $N'(1/2^+)$, Wilson fermions, OPE-based spectral ansatz

• Lee & Leinweber Nucl.Phys.B (Proc.Suppl.) 73 (1999) 258 $N^*(1/2^-), N^*(3/2^-), O(a^2)$ tree level tadpole-improved D χ 34 action.

Lee

Nucl.Phys.B (Proc.Suppl.) 94 (2001) 251 $N'(1/2^+), N^*(1/2^-)$, anisotropic improved gauge action ($a_s = 0.24$ fm), D234 quark action

Survey of N* Calculations

- Sasaki, Blum & Ohta hep-lat/0102010, hep-ph/0004252 $N'(1/2^+), N^*(1/2^-)$, domain wall fermions
- Richards, hep-lat/0011025, Göckeler et al. hep-lat/0106022 $N^*(1/2^-), \Delta^*(3/2^-), \text{ non-perturbatively improved clover}$ quark action
- Nakajima, Matsufuru, Nemoto & Suganuma, hep-lat/0204014, Λ^{*}_{1,8}(1/2⁻), anisotropic improved gauge action, O(a)

improved quark action

Baryon Masses on the Lattice

Two-point baryon correlation function:

$$G_{\alpha\alpha'}(t,\vec{p}) \equiv \sum_{\vec{x}} \exp(-i\vec{p}\cdot\vec{x}) \langle 0 | T \chi_{\alpha}(x) \bar{\chi}_{\alpha'}(0) | 0 \rangle$$

 \checkmark χ is a baryon interpolating field, α, α' are Dirac indices.

Baryon Masses on the Lattice

• For large Euclidean time $t_E \to \infty$,

$$G_{\alpha\alpha'} = \frac{\lambda_{B^+}^2}{2E_{B^+}} (\gamma \cdot p + M_{B^+})_{\alpha\alpha'} e^{-E_{B^+} t} + \frac{\lambda_{B^-}^2}{2E_{B^-}} (\gamma \cdot p - M_{B^-})_{\alpha\alpha'} e^{-E_{B^-} t}$$

- Periodic boundary conditions in the spatial directions.
- Fixed boundary condition in the time direction,

 $U_t(\vec{x}, nt) = 0, \quad \forall \, \vec{x} \, .$

Baryon Masses on the Lattice

• For large Euclidean time $t_E \to \infty$,

$$G_{\alpha\alpha'} = \frac{\lambda_{B^+}^2}{2E_{B^+}} (\gamma \cdot p + M_{B^+})_{\alpha\alpha'} e^{-E_{B^+} t} + \frac{\lambda_{B^-}^2}{2E_{B^-}} (\gamma \cdot p - M_{B^-})_{\alpha\alpha'} e^{-E_{B^-} t}.$$

Project positive or negative parity masses by taking trace of G with

$$\Gamma_{\pm} = \frac{1}{2}(1 \pm \gamma_4) = \begin{pmatrix} | (0) & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Interpolating Fields

Positive parity proton interpolating fields:

$$\chi_1^{p+}(x) = \epsilon^{abc} \left(u^{Ta}(x) C \gamma_5 d^b(x) \right) u^c(x)$$
$$\chi_2^{p+}(x) = \epsilon^{abc} \left(u^{Ta}(x) C d^b(x) \right) \gamma_5 u^c(x)$$

a, b, c are colour indices

 \checkmark χ_1 involves upper \times upper \times upper components. \longrightarrow "diquark" $(u^T \cdots d)$ couples to spin 0 (attractive). $\longrightarrow \chi_1$ is $\mathcal{O}(1)$ in the nonrelativistic limit.

 \checkmark χ_2 mixes upper \times lower \times lower components.

 $\longrightarrow \vec{\sigma} \cdot \vec{p} \Rightarrow$ relative $\ell = 1$, "diquark"

 $\longrightarrow \chi_2 = \mathcal{O}(p^2/E^2)$, vanishes in the nonrelativistic limit.

 \longrightarrow Known to have little overlap with ground state.

$N'(1/2^+)$ Mass from the χ_2 Correlation Function

$N^*(1/2^-)$ Mass from the χ_1 Correlation Function

Summary of Nucleon Results

Summary of Σ Results

Summary of E Results

A Interpolating fields

- We consider:
- The full SU(3)-flavour octet Λ interpolating field, and
- The SU(2)-isospin singlet Λ interpolating field.
- The latter contains terms Common to both the
 SU(3)-flavour octet interpolator, and
 - SU(3)-flavour singlet interpolator.
- Solution No SU(3)-flavour representation bias in Λ -common.

A Summary

N* Summary

- No evidence of Roper states using conventional interpolators.
 - Are exotic interpolating fields required?

N* Summary

- No evidence of Roper states using conventional interpolators.
 Are exotic interpolating fields required?
- Good agreement among calculations of $N^*1/2^-$ using improved actions.
- Resolved clear splitting between $N_1^* 1/2^-$ and $N_2^* 1/2^-$.

N* Summary

- No evidence of Roper states using conventional interpolators.
 Are exotic interpolating fields required?
- Good agreement among calculations of $N^*1/2^-$ using improved actions.
- Resolved clear splitting between $N_1^* 1/2^-$ and $N_2^* 1/2^-$.
- No evidence for the mass suppression of $\Lambda^*(1405)$.
 - Suppression of meson-cloud in Quenched Approximation?
 - Are exotic interpolating fields required?

Spin-3/2 Interpolating Fields

$$\chi^{3/2}_{\mu}(x) = \epsilon^{abc} \left(u^{Ta}(x) C \gamma_5 \gamma_{\mu} d^b(x) \right) \gamma_5 u^c(x) \,.$$

Spin-3/2 Interpolating Fields

$$\chi^{3/2}_{\mu}(x) = \epsilon^{abc} \left(u^{Ta}(x) C \gamma_5 \gamma_{\mu} d^b(x) \right) \gamma_5 u^c(x) \,.$$

Apply the spin-3/2 projection operator

$$P_{\mu\nu}^{3/2}(p) = g_{\mu\nu} - \frac{1}{3}\gamma_{\mu}\gamma_{\nu} - \frac{1}{3p^2} \left(\gamma \cdot p \,\gamma_{\mu} \, p_{\nu} + p_{\mu} \,\gamma_{\nu} \,\gamma \cdot p\right).$$

Spin-3/2 Interpolating Fields

$$\chi^{3/2}_{\mu}(x) = \epsilon^{abc} \left(u^{Ta}(x) C \gamma_5 \gamma_{\mu} d^b(x) \right) \gamma_5 u^c(x) \,.$$

$$P_{\mu\nu}^{3/2}(p) = g_{\mu\nu} - \frac{1}{3}\gamma_{\mu}\gamma_{\nu} - \frac{1}{3p^2}\left(\gamma \cdot p \gamma_{\mu} p_{\nu} + p_{\mu} \gamma_{\nu} \gamma \cdot p\right).$$

- Computational cost is 64 times the proton correlation function.
- Spin projection followed by parity projection allows isolation of 4 states.

 $N^*1/2^+$, $N^*1/2^-$, $N^*3/2^+$, $N^*3/2^-$.

Quenched *p*-wave $N \eta'$ Negative Metric Contrib. to $N^*3/2^+$

Quenched *p*-wave $N \eta'$ Negative Metric Contrib. to $N^*3/2^+$

			- - -	T 1		. •			
	menched	Chiral		onana	\mathbf{V}^{1}		Ke	h avi	or
X			_ <u>+</u> `		J				

Conventional mesons are modified

The η' remains degenerate with the pion and can contribute negatively to correlation functions.

The Roper in Quenched QCD

Suppose the Roper resonance is a gluon rich excitation.

Strong coupling to $N \eta'$.

The Roper in Quenched QCD

- Suppose the Roper resonance is a gluon rich excitation.
 - Strong coupling to $N \eta'$.
- Correlation function may be dominated by a quenched negative-metric $N \eta'$ contribution.

The Roper in Quenched QCD

- Suppose the Roper resonance is a gluon rich excitation. Strong coupling to $N \eta'$.
- Correlation function may be dominated by a quenched negative-metric $N \eta'$ contribution.
- Ground state nucleon is also $J^P = 1/2^+$.
- If $N \eta'$ dominates the correlation function function at intermediate Euclidean time,
 - Correlation function will be negative and change sign as the ground state nucleon eventually dominates the correlation function.

Quenched *p*-wave $N \eta'$ Negative Metric Contrib. to $N^*1/2^+$

$N^*3/2^-$ and $N1/2^+$ from Spin-3/2 Interpolating Field

$\Delta 3/2^+, \Delta^* 3/2^-, \Delta^* 1/2^{\pm}$

$N^*3/2$ Summary

- Signal obtained for $N^*3/2^-$.
- Negative-metric contributions observed otherwise.
 - **Quenched-** $N \eta'$ artefacts

$N^*3/2$ Summary

- Signal obtained for $N^*3/2^-$.
- Negative-metric contributions observed otherwise.
 Quenched- $N \eta'$ artefacts
- Spin- $\frac{1}{2}$ Projection reveals
 - **Quenched** $N \eta'$ dominating at early times.
 - Quenched Roper?
 - Ground state Nucleon ultimately revealed.

$N^*3/2$ Summary

- Signal obtained for $N^*3/2^-$.
- Negative-metric contributions observed otherwise.
 Quenched-N η' artefacts
- **Spin-** $\frac{1}{2}$ **Projection reveals**
 - **Quenched** $N \eta'$ dominating at early times.
 - Quenched Roper?
 - Ground state Nucleon ultimately revealed.

Resolved all four Δ states

 $\Delta^3/2^+, \ \Delta^*3/2^-, \ \Delta^*1/2^+ \ \Delta^*1/2^-$

FLIC Conclusions & Future Work

- Using fat links in the irrelevant operators works.
- Does better than mean-field improvement.
- Competitive with non-perturbative improvement
- Reduced exceptional configuration problem $m_{\pi}/m_{\rho} = 0.35$

FLIC Conclusions & Future Work

- Using fat links in the irrelevant operators works.
- Does better than mean-field improvement.
- Competitive with non-perturbative improvement
- Reduced exceptional configuration problem $m_{\pi}/m_{\rho} = 0.35$
- Gluonic Excitations in Hadrons
 Mesons with Exotic Quantum Numbers

FLIC Conclusions & Future Work

- Using fat links in the irrelevant operators works.
- Does better than mean-field improvement.
- Competitive with non-perturbative improvement
- Reduced exceptional configuration problem $m_{\pi}/m_{\rho} = 0.35$
- Gluonic Excitations in Hadrons — Mesons with Exotic Quantum Numbers
- Three-point correlation functions
 - \longrightarrow Electromagnetic Form Factors
 - $\longrightarrow N \rightarrow \Delta$ transition form factors
 - $\longrightarrow N \rightarrow N^*$ transition form factors

Baryon Masses on the Lattice

Two-point baryon correlation function:

$$G_{\alpha\alpha'}(t,\vec{p}) \equiv \sum_{\vec{x}} \exp(-i\vec{p}\cdot\vec{x}) \langle 0 | T \chi_{\alpha}(x) \bar{\chi}_{\alpha'}(0) | 0 \rangle$$

 χ is a baryon interpolating field and α, α' are Dirac indices

Baryon Masses on the Lattice

Two-point baryon correlation function:

$$G_{\alpha\alpha'}(t,\vec{p}) \equiv \sum_{\vec{x}} \exp(-i\vec{p}\cdot\vec{x}) \langle 0 | T \chi_{\alpha}(x) \bar{\chi}_{\alpha'}(0) | 0 \rangle$$

 χ is a baryon interpolating field and α, α' are Dirac indices

Overlap of χ with positive or negative parity states $|B^{\pm}\rangle$ parameterized by coupling strength $\lambda_{B^{\pm}}$:

$$\langle 0 | \chi(0) | B^{+}(p,s) \rangle = \lambda_{B^{+}} \sqrt{\frac{M_{B^{+}}}{E_{B^{+}}}} u_{B^{+}}(p,s)$$

$$\langle 0 | \chi(0) | B^{-}(p,s) \rangle = \lambda_{B^{-}} \sqrt{\frac{M_{B^{-}}}{E_{B^{-}}}} \gamma_{5} u_{B^{-}}(p,s)$$

Exotic Quantum Numbers

- A $\overline{q}q$ system is an eigenstate of parity with $P = (-1)^{L+1}$
- Charge conjugation applied to a neutral system provides $C = (-1)^{L+S}$
- For S = 0, the total angular momentum J = L and CP = -1. $J^{PC} = 0^{-+}, 1^{+-}, 2^{-+}, \dots$
- One cannot form the alternate CP = -1 states $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, \ldots$ and these states are known as exotics.
- These states can be created on the lattice via hybrid operators.

Hybrid Meson Interpolators

- Combine the following ingredients:
 - $\Box \bar{q}^{a}\Gamma q^{a}$: colour singlet quark bilinear
 - \blacksquare $\bar{q}^{a}\Gamma q^{b}$: colour octet quark bilinear
 - \blacksquare B^{ab} : colour magnetic field, colour 8, $J^{PC} = 1^{+-}$
 - \blacksquare E^{ab} : colour electric field, colour 8, $J^{PC} = 1^{--}$
- Pion plus color magnetic field

$$\bigcirc 0^{-+} \otimes 1^{+-} = 1^{--}$$

- \square 1⁻⁻: $\bar{q}^a \gamma_5 q^b B_i^{ab}$ (ρ meson).
- Rho plus color magnetic field

$$1^{--} \otimes 1^{+-} = 0^{-+} \oplus 1^{-+} \oplus 2^{-+}$$

$$\blacksquare \hspace{0.1 in} 0^{-+} : \hspace{0.1 in} ar{q}^a \gamma_i q^b B^{ab}_i \hspace{0.1 in}$$
 ($\pi \hspace{0.1 in}$ meson)

 \square 1⁻⁺: $\epsilon_{ijk} \bar{q}^a \gamma_i q^b B^{ab}_j$ (exotic)