

Cold cooling R&D developments 30 June 2021

Bart Verlaat, CERN

The cold future of CERN

- Triggered by LHCb-VELO3 EP-DT has looked into the options for colder cooling than the current CO2 technology can provide.
- Parametric studies have been done to explore the cold landscape to see which technologies and fluids would be candidates.
- The cold cooling R&D is adopted in future R&D programs as there is mutual interest of other future detectors
 - Part of ECFA R&D roadmap
 - <u>https://indico.cern.ch/e/ECFADetectorRDRoadmap</u>
 - <u>https://indico.cern.ch/event/957057/program</u>
 - https://indico.cern.ch/event/999825/
 - Part of EP-DT R&D roadmap
 - <u>https://indico.cern.ch/event/743661/</u>
- A PhD project has started in collaboration with NTNU-Trondheim on cold cooling research

What are the cooling needSlides from ECFA talktrends for future?

- Cooling demand input was given in the 2 input sessions
 - o https://indico.cern.ch/event/994685/
 - o https://indico.cern.ch/event/994687/
- Global tendency for future cooling needs:
 - <u>Lepton-Lepton, Lepton-Hadron and Ion colliders</u> all seems to have in common a warm temperature domain and relatively low heat load densities.
 - **Hadron-Hadron colliders**, have the tendency for a colder cooling at increased power densities.
 - Other presented experiments did not show extreme cooling demands requiring special long term R&D, exceptions to this statement are:
 - Silicon Photomultiplier detectors are considered as technology in many detectors and require very cold temperatures
 - The AMBER detector is considering a cryogenic tracker with temperatures below 1.8K

Cooling & Refrigeration versus

Slides from ECFA talk

Cryogenics

- There are many differences in the definition and application of cooling versus cryogenics. For the future we are approaching the intermediate space requiring long term R&D.
- Cryogenics is often declared as temperatures below 120K / -153°C being referenced to liquid Krypton at atmospheric pressures
- The "Standard" Cooling / Refrigeration domain is above -60°C. Limited choice of industrial applications are present for colder temperatures, without using cryogenic technologies.
- Another very important difference between refrigeration and cryogenics:
 - Refrigeration has the goal is to remove large heat numbers at medium low temperatures using pressurized gasses in piping systems
 - Cryogenics has the goal to make very cold temperatures at reduced heat numbers often around atmospheric pressure systems in pool boiling cryostats.
- The widely used CO₂ cooling for detectors has an application range of 20°C / -40°C
- For future detector cooling we need to explore the unknown intermediate space (-150°C /-40°C) approaching cryogenic temperatures with relative large heat loads to cool.
 - We need to mix our Cooling and Cryogenic knowledge and experiences

Fluid	Boiling point (K/°C)		
Helium-3	3.19 / -269.96		
Helium-4	4.214 / -268.936		
Hydrogen	20.27 / -252.88		
Neon	27.09 / -246.06		
Nitrogen	77.09 / -196.06		
Air	78.8 / -194.35		
Fluorine	85.24 / -187.91		
Argon	87.24 / -185.91		
Oxygen	90.18 / -182.97		
Methane	111.7 / -161.45		
Krypton	119.75 / -153.4		

Detector cooling explained

Slides from ECFA talk

- To keep the detectors cold and away from thermal runaway, 2 things are important:
 - The cooling fluid low temperature
 - The Thermal Figure of Merit (cm²*K/W),
 - TFoM = The thermal resistance from source to sink (sensor to cooling)
 - TFoM: A thermal resistance chain including: material conductance, interface resistance, fluid heat transfer coefficient and pressure drop (2-phase systems) or caloric heating (Single phase systems)
 - As the gradients are heat load depended a higher TFoM requires a colder fluid temperature. The relation is non-linear (An accelerating cold temperature is needed at a worse TFoM)
- The selection of the TFoM and hence cooling temperature is a mass saving optimization

TFoM and cooling temperature

B. Verlaat

Fluid comparison

Slides from ECFA talk

System Cycles

2PACL cycle

- Good heat transfer due to low vapor quality
- Limited cold use due to liquid freezing (>-40°C)
- Cold transfer lines

Currently active cooling domain (-40°C / +20°C) Slides from ECFA talk

- In this temperature domain the leading choice is evaporative CO₂ cooling using the 2PACL cycle technology
- Well known technology, still R&D needed in specific domains
 - Larger heat flux domains (>1W/cm² sensor flux) 0
 - By use in complex evaporator geometries like micro-channels or 3D 0 print heatsinks.
 - Warm cooling behaviour for services cooling
- Alternative fluid candidates are single phase Novec or water $(+^{\circ}C)$
- Fluorocarbons (single or 2-phase are not being considered ٠ for future use due to their bad environmental properties and their potential ban by future regulations)
- CO₂ is used at CERN in the following applications: •

AMS@ISS 2011-

LHCb-Velo

2008-2018

ATLAS-IBL 2014-

CMS-Pixel 2015-

Traci

2011-2015

2016-

LHCb-Mauve ATLAS & CMS Ph2 2019-Upgrade (2025)

CERN official environment Report

Slides from ECFA talk

«CERN's emissions are equal to a large cruise liner»

https://physicsworld.com/a/cerns-emissions-equal-to-a-large-cruise-liner-says-report/

«Greenhouse gas emissions at CERN arise from the operation of the Laboratory's research facilities. The majority of emissions come from CERN's core experiments and more than 78% are **fluorinated gases**. With climate change a growing concern, the

GROUP	GASES	tCO ₂ e 2017	tCO₂e 2018
PFC	CF_4 , C_2F_6 , C_3F_8 , C_4F_{10} , C_6F_{14}	61 984	69 611
HFC	CHF ₃ (HFC-23), $C_2H_2F_4$ (HFC-134a), HFC-404a, HFC-407c, HFC-410a, HFC R-422D, HFC-507	106 812	96 624
	SF ₆	10 192	13 087
	CO ₂	14 612	12 778
TOTAL Scope 1		193 600	192 100

Organization is committed to reducing its direct greenhouse gas emissions.»

https://hse.cern/environment-report-2017-2018/emissions

CERN management accepted and financed an objective to reduce CERN's direct greenhouse gas emissions by 28% by the end of 2024. Among the actions being taken to achieve this, CERN has for several years been developing environmentally-friendly cooling systems that have potential for applications in other domains."

EP-DT

Detector Technologies

CERN

Cooling fluids used at CERN (with room temperature reference)

	Normal boiling conditions P=1atm or T=20 °C		2- Phase proper ties at 20°C	Critical point		Properties at normal conditions T=20 °C, P=1atm or normal boiling pressure in case of liquefied gas			Other properties	
Fluid	Boiling temperat ure (°C)	Boiling pressure (bar)	Latent heat (kJ/kg)	Critical temperat ure (°C)	Critical pressure (bar)	Density (kg/m3)	Heat capacity (kJ/kg*K)	Viscosity (µPa*s)	GWP	Prize €/kg
Water	100	0.023	2453	373.9	220.6	998	4.18	1001.6	-	0
Novec 649 ¹	49.1	0.326	96.2	168.7	18.7	1617	1.10	756.6	1	47,-
C6F14	56.9	0.236	94.0	175.9	18.3	1703	1.03		9300	30,-
C5F12	29.8	0.695	95.0	147.4	20.5	1632	1.07	497.6	9160	
C4F10	-2.2	2.29	88.9	113.2	23.2	1516	1.07	230.9	9200	138,-
C3F8	-36.8	7.56	79.1	71.9	26.4	1352	1.15	180.6	8900	38,-
C2F6	-78.1	78.1 Super critical 19.88 30.5		30.5	Super critical			11100	100,-	
CO2	-78.4	57.29	152.0	30.97	73.8	773.4	4.3	66.1	1	0.015

¹Not well understood radiation and material compatibly issues

EP-DT

CERN

No future

EP-DT

Extended domain for Hadron collider **Detector Technologies** experiments (-80°C / -40°C) Slides from ECFA talk

- Future detectors with increased radiation doses require colder cooling beyond the current CO₂ capacities (<-40°C)
- There are not many existing technologies in this temperature domain ۲
- Serious R&D is needed in this temperature domain exploring new technologies
- Candidate fluids and cycle technologies: •
 - Krypton (evaporative and super critical), 0
 - A new cycle technology is needed as cooldown from ambient starts in the gas phase
 - Trans-critical cooldown needed to avoid thermal shocks
 - Carbon Tetrafluoride (CF4) 0
 - The only fluorocarbon candidate which could be considered due to the limited choice of candidates in the high temperature area of this domain
 - Same cycle challenges as Krypton
 - N_2O/CO_2 mixtures (100% $CO_2 > -55^{\circ}C / 100\% N_2O @ -90^{\circ}C$) 0
 - N_2O has nearly the same properties as CO_2 , but a much lower freezing temperature. Can be used as a mix with CO_2 acting as an anti-freeze or pure if ultra low temperatures are needed (>-90°C)
 - Due to the lower efficiency at cold temperatures, N_2O/CO_2 mixtures are best to be considered for low heat flux applications like SiPM cooling. •
 - Ethane or Ethylene would be good thermal candidates, but not preferred because of their 0 flammable properties.
- Currently VELO-3 is seriously looking into this temperature domain
- Future high radiation experiments (eg. FCC) are expected to need colder cooling than the ٠ current CO₂ range

30/06/2021

-50

Extended

domain for

LHC/FCC experiments

Mare

Supercritical cooling, a special mono-Slides from ECFA talk phase cooling case

- The super critical region is a mono-phase region with very favourable properties for heat and mass transfer
 - Very high heat capacity, Cp=J/kg*K
 - Very low viscosity, µ=Pa*s 0
- High heat transfer capability ۲
- SC-CO₂ is interesting to explore for warm cooling applications (31°C / 45°C)
- For cold temperature applications the use of super critical Krypton cooling (SC-Kr) can be considered (-63°C / -50°C)

Figure 1. Pressure-enthalpy diagram for carbon dioxide identifying different phases

Super critical heat capacity of CO₂ compared to water

Fig. 3 - Heat transfer coefficient versus bulk temperature for different mass fluxes by Yoon et al. (2003).

14

thermal insulator Ti 3D-printed cooling bar for SiPM arrays SiPM arrays

Simple Lab setup

CMS SiPM with TEC cooling

Slides from ECFA talk (SiPM)

- Many future detectors are considering SiPM detectors.
 - Current : LHCb-SciFi, CMS-EC upgrade
 - Future : Calorimeters, scintillator trackers
- Cooling temperature depends on noise allowance and radiation level
- Temperatures in the range of -50°C to -150°C are being considered
- SiPM have a low heat dissipations
- Main contribution for cooling system is heat leak due to the difficulty to make good insulation (Direct mounting on scintillator material)
- The wish for cryogenic temperatures have a large challenge as the detectors are not suitable to fit in standard cryostats.
- Cooling method candidates:
 - Integrated Thermal Electric Cooler (TEC or Peltier) with CO₂ or Novec cooling
 - \circ CO_2/N_2O mixtures in a vapor compression cycle potentially with warm in and outlet lines (ATLAS ID cooling concept)
 - Pressurized 2-phase Krypton based cooling like slide 10
 - Pressurized 2-phase Argon or LN2 for colder temperatures
 - R&D involves:
 - o Cooling fluid use
 - Cooling cycle
 - o Insulation / mechanical structure design concept

Summary

LN2 saturation

- Some summary points from ECFA talk:
 - For future detector cooling the following R&D areas have been localized:
 - High heat density cooling in the temperature domain below CO₂ (-40°C / -80°C)
 - Super and sub critical Krypton cooling using a trans critical cool down cycle
 - o CF₄ is a non-green back-up solution
 - Low heat density cooling in the temperature domain below CO₂ (-40°C / -80°C)
 - \circ CO_2/N_2O mixtures (or pure N_2O) in an oil free vapor compression cycle (With warm transfer lines) or 2PACL cycle
 - A special attention to the following specific detectors is needed
 - SiPM cooling including thermal housing design (-40°C / -150°C), using technologies mentione above

	Temperature (°C)	Pressure (bar)
1	-200.00	0.59842
2	-195.00	1.1117
3	-190.00	1.9067
4	-185.00	3.0660
5	-180.00	4.6767
6	-175.00	6.8299
7	-170.00	9.6198
8	-165.00	13.146
9	-160.00	17.516
10	-155.00	22.854
11	-150.00	29.329

- For future LHCb, similar activities for cold cooling are done in the general R&D domain
 - For VELO, high power density cold cooling is an option
 - Krypton, CF₄ with a new cycle (T=-150/-60'C)
 - Pressurized liquid nitrogen an option (T<150'C) for colder cooling
 - For SciFi low power density cold cooling
 - Extended CO₂/N₂0 in a vapour compression cycle (>-90'C)
 - Colder than -90'C pressurized liquid Krypton, Argon or N2 would work

Temperature °C

30/06/2021