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Abstract

In the production of ultracold neutrons (UCN) by scattering cold neutrons in superfluid

4He or cold solid D2 (“superthermal” processes), the UCN production rate is proportional

to the spatial density of cold neutrons in the material.  For a superthermal source fed from a

cold neutron guide, we show that the rate of UCN production can be increased by up to a

factor of 2.5 for realistic substances by enclosing the source in a cavity made of a material

with a high cold neutron albedo.
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1. Introduction

The most promising avenue for increasing the density of ultracold neutrons (UCN)

available for experiments is in the use of “superthermal” processes [1]; a relatively high

energy neutron (corresponding to a temperature of 10–40°K) can  produce a phonon in a

cold material such as superfluid 4He, and come to near rest (temperature less than 5 mK)

[2].  The inverse process, that is, a UCN absorbing a phonon from the material and having

its energy increased above the UCN range, is suppressed by the Boltzmann factor.  The

most famous example of a superthermal source is based on superfluid 4He [1].  If the

superfluid bath is below 0.7°K, the mean UCN lifetime against upscattering is equal to the

beta decay lifetime (neutron absorption by 4He is energetically forbidden), while the

production rate is essentially independent of temperature:

P = 7.2
dΦ
dλ 8.9Å

1

λ u
3  , (1)

where the flux is specified as the number of neutrons incident on the source per second

cm2 Å, and λ u  corresponds to the shortest wavelength UCN that can be contained by the

walls surrounding the superthermal source.  The UCN density is then given by the UCN

lifetime τ in the container, times the production rate P given above.  For modern UCN

storage techniques, τ can approach the neutron beta decay lifetime of ~ 900 s; in this case,

at existing cold neutron sources, UCN densities of up to 103 times existing sources might

be possible.

The use of superfluid 4He as a UCN source is best applied to a specific experiment,

such as has been proposed for the neutron electric dipole moment (EDM) [3] or neutron
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lifetime [4], where the UCN are available, albeit at high density, only after a rather long

accumulation time.  Another type of superthermal source is based on solid D2 or other cold

material; this type of source is best thought of as a “current source” with a high density [5]

of UCN continuously available.

In order to maximize the UCN production rate from a superthermal source, it

should be placed as close as possible to the source of cold incident neutrons.  This

arrangement is possible because the UCN production rate does not depend on collimation

of the incident neutrons, but only on the neutron density.  However, for a number of

practical reasons, it is easier to feed a superthermal source from a neutron guide because

placing a very cold material near a reactor or spallation cold source would require

considerable cryogenic resources.  For a number of applications (testing UCN production

in solid D2 [3], a neutron EDM experiment [2], a neutron beta-decay lifetime measurement

[4]), feeding the superthermal source from a neutron guide is a quite viable alternative; in

fact, with modern supermirror guide technology, the effective solid angle subtended by the

guide can approach the maximum solid angle (due to restrictions on radiation heating) that

one could hope to achieve by placing the superthermal source near the cold source.

As we describe below, it is possible to enhance the UCN production rate for a

superthermal source located on a neutron guide.  Neutrons exiting a guide are restricted

within a very narrow solid angle.  The incident neutrons can therefore be trapped in a cavity

made of a high, diffuse reflectivity (albedo) material, and their interaction time or effective

density can be increased, in principle, by up to a factor of four.  This improvement is due in

part to the fact that materials useful for a superthermal UCN source have very low neutron
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absorption rates; in the case of solid D2 or CD4, the absorption lifetimes are of order 0.15

sec.

2. Kinetic Theory of a Cold Neutron Trap

Consider the apparatus shown in Fig. 1.  Cold neutrons leave a guide and enter a

cavity of internal volume V and internal area A through an aperture of area a.  If the cavity

wall has zero albedo, the effective neutron density in the cavity is given by

ρc
0 = ρb ad V  , (2)

where ρc,b  are the beam and cavity neutron densities, and d is the characteristic length

indicated in Fig. 1.  The beam density is simply given by

ρb v( ) = Φ v( ) v  , (3)

where Φ v( )  is the incident flux at velocity v.  In the case of a superfluid 4He superthermal

source, we are only interested in a narrow velocity range; in the discussion below, we will

consider a single fixed neutron velocity component.

Now consider the case where the cavity walls have a finite average reflectivity R.

ρc  can be estimated by balancing the rate at which neutrons enter the cavity (per unit

volume) to the rate at which they exit (either through losses at the wall reflections or

through the entrance aperture);

4



ρc = ρc
0 + R

Φa

V
τ  , (4)

where ρc
0  is the density when R = 0.  The factor of R in the second term gives the

probability that the neutrons are trapped and gives the input rate for the following statistical

calculation.

The total lifetime for a cold neutron in the cavity is given by

τ −1 = τa
−1 + τw

−1 , (5)

where the wall loss rate is given by τw
−1 = (1− R)(v L ) with

L =
4V

A
 , (6)

the mean free path from kinetic theory [6].  The loss rate through the aperture is determined

by the flux incident on it,

j =
1

4
ρcv  , (7)

giving a loss time constant for N = ρcV  neutrons in the cavity of

τa
−1 =

˙ N 

N
=

1

4
ρcva

ρcV
=

1

4

va

V
 . (8)
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Algebraically combining the above equations gives the relative density in the cavity

compared to the incident beam,

ρc

ρb
=

aL

V
+

4R

A a( ) 1 − R( ) +1
 , (9)

which can be as large as 4 in the limit of R tending to 1. The actual enhancement factor is

the density in the cavity with the reflector as compared to the density without the reflector

ρc

ρc
0 = 1+

4VR

dA 1 − R( ) + ad
 . (10)

Insofar as we have taken a single velocity class of neutrons as appropriate for superthermal

sources, the cavity enhancement ρc ρc
0  does not depend on the neutron velocity (though,

in general, R is a function of v).

In the limit that R → 1 we see an enhancement in the cavity density by a factor of

over four.  The implication is that the cavity, if constructed from high enough albedo

material, will compensate for a guide of cross sectional area a  << A, and we can enjoy an

embellished cold neutron density over a much larger bottle cross section than implied by

the guide area.
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3. Fermi’s Albedo Principle

In actual experiments, the statistical precision of the result depends on the total

number of UCN in the sample per unit time.  The figure of merit for a reflector design is

the probability that a neutron scatters in the source multiplied by the volume of the source

vessel.  The probability of interaction is proportional to the distance traveled in the vessel,

and we can obtain the enhancement due to the reflector just by comparing the distances

traversed with and without the reflector.

We construct an elementary model of the source by considering the average

reflectivity of the walls R , the cross-sectional area of the guide a, and the surface area of

the reflector A.  The probability of a neutron being reflected from the wall ε  is

ε = R 1 − a A( )  . (11)

The average number of intersections with a wall is denoted by N.  We have

N = ε n

n =0

∞

∑ = R n 1 −
a

A
 
 
  

 
 

n 

 
 

 

 
 =

A

A − R A − a( )n=0

∞

∑  . (12)

The total distance traveled in the sample per neutron is

L = d + NL  , (13)

where L  is the mean free path in the sample and d is the distance that the neutrons travel

from the guide to their first intersection with the wall (see Fig. 1).  From statistical
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mechanics, it can be shown that L = αV A( ) , where V is the volume of the cavity and α is

approximately 4 (see Ref. [6], p. 27).  This expression is roughly independent of the

geometry of the cavity.  One can realistically expect the approximation α = 4 to be accurate

to within 20 percent. We thus find

L = d + 4V
1

A − R A − a( )
 

 
 

 

 
  . (14)

The reflectivity of the cavity walls R, as a function of incident angle τ, can also be

calculated theoretically as was done by Fermi (see Ref. [7], p. 496) for an infinite plane of

reflector material.  The material is characterized by the number of scattering collisions per

absorbing collision n, given by the ratio of the elastic incoherent scattering cross section

σ inc  to the absorption cross section σabs .

n =
σ inc

σabs
, R =

n − 1

n + 3cosθ
. (15)

From R, the average reflectivity R  is computed by noting that the incident angles are

distributed according to cos(θ ).

R = β cosθ Rd
0

π

∫ θ = β n −1( ) π
2 3

− 2
n

3n − 9
tan −1 n − 3

n + 3

 
 
 

 
 
 

 

 
 

 

 
  . (16)

Since Fermi's model is for an infinite plane of infinite thickness, we introduce a

factor β that takes the finite geometry into account.  Generally β will be a function of
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thickness, size of the vessel, and material.  The enhancement factor that the reflector gives

the experiment is Et = L d .  Collecting the above expressions together, we have

Et =1 +
4V

d

1

A − A − a( )β n −1( ) π
2 3

− 2 n
3n−9

tan−1 n−3
n + 3( ) 

  
 
  

 

 

 
 
 

 

 

 
 
 

 . (17)

The number of neutrons in the cavity at any time can be found in terms of the flux

of neutrons per unit area in the guide Φ0  and the neutron velocity v,

Mt =
Φ0adEt

v
 . (18)

4. Monte Carlo Analysis

To test the simple theory, we have performed a Monte Carlo analysis of some

reflectors.  We have tried to optimize the design to maximize the enhancement factor and

the total number of neutrons in the 4He, subject to some engineering constraints imposed

by the design of an EDM experiment, an interest of ours.  The neutrons considered in the

following sections are monoenergetic with a wavelength of 8.9Å.

A computer simulation of the neutron transport through the apparatus was

constructed for cylindrical (see Fig. 1) and rectangular geometries.  The neutrons were

uniformly distributed throughout the guide and collided with the wall on the opposite side.

Then they were transported through the apparatus according to the following scheme:
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1. Choose a diffusion length l  according to the exponential distribution f (l) =

(1 l0 )e− l l0 , where l0 = [1 (σ inc + σabs)ρ] and ρ is the density of atoms in the

material.

2. Move the neutron by this length.

3. Determine if the neutron was absorbed in this collision according to the fractional

probability of absorption σabs (σ inc + σabs) .

4. If there is no absorption, scatter the neutron uniformly into a solid angle of 4π.

5. If the neutron emerges from the material, determine if it is transmitted.  If it is

inside the source, propagate it to the boundary.  At this point it is either lost back

into the guide or the process commences again.

This procedure is carried out for many neutrons and the Monte-Carlo enhancement factor

EMC  is computed as the average ratio of the total distance that a neutron travels through the

4He to the length of the cell, i.e., the distance that the neutron would have traveled through

the 4He if there was no reflector.  We also compute the number of neutrons MMC  from the

enhancement factor EMC  and the dimensions of the apparatus via Eq. (18).  The simulated

values EMC  and MMC  are compared to the theoretical ones.  They agreement is expected to

be about 40 percent due to the various idealizations assumed in the theory.

Vital inputs to simulating a particular material are the density and the cross sections

for incoherent scattering and absorption.  We have calculated the cross sections for

compounds from the data for particular elements [8].  For N constituent atoms of a

molecule, we combine the bound coherent scattering lengths for each component atom, ai ,

to form the total and coherent scattering cross sections, σ tot  and σcoh , respectively, via

10



σcoh = 4πN fi ai
i=1

n

∑
 

 
 

 

 
 

2

, σ tot = 4π Niai
2

i=1

n

∑  , (19)

where f i = Ni N  is the number fraction of the ith  atom.  The incoherent scattering cross

section is the difference between the two.

σ inc = σcoh − σ tot . (20)

If each constituent atom has an absorption cross section of σ i
abs, we take the total

absorption cross section of the compound at an absolute temperature T to be [8]

σabs =
300

T
σ i

abs

i=1

n

∑  , (21)

where it is assumed that the values in the tables are given at the standard temperature of

300°K.  Table 1 lists the cross sections and densities for the materials used in the following

analysis.  The cross sections for BeO are unreliable because they depend on the method of

preparation.  The potential grainy structure of the material may raise the cross section from

the value of 1 barn given by Eq. (20) to the value we used of 20 barns.

We determined the thickness of a material that essentially saturates the

enhancement factor.  We have computed EMC  for several materials and thicknesses.  The

results, for a rectangular geometry with the height taken as 10 cm and with d set to 20 cm,

are shown in Table 2.

11



Table 2 also lists the β factors obtained for each material and the theoretical

enhancement factor Et  that results from the β factor and the material properties.  The

theoretical enhancement is compared to the enhancement factor at the corresponding

saturation thickness.  We note that the percentage differences between Et  and EMC  are well

within the expected 40 percent accuracy of the theory.

In the relative evaluation of materials, the practical aspects of a particular apparatus

must be taken into account.  Since the EDM experiment will involve the detection of

photons, Plexiglas C5H8O2 walls may provide a useful medium for getting the light to

photomultiplier tubes.  Additionally, Plexiglas would be an insulator for supporting the

high voltage.  Plexiglas does not provide the optimum neutron density, but it is reasonably

good and has the additional advantage of saturating at a 2-cm wall thickness, a useful

property since the entire source will need to be cooled to 0.5°K for the EDM experiment.

As the Plexiglas will be cold, losses due to upscattering of cold neutrons by the hydrogen

will be suppressed.

We found that the enhancement factor does not depend critically on the guide size,

and we assumed for all calculations a square cross section of 10 cm on a side because that

size is intended for the experiment at the Los Alamos National Laboratory.

5. Results

The engineering constraints imposed by the EDM experiment limit the vertical size

of the source to 10 cm because of systematic errors due to UCN density gradients induced

by the gravitation field of the Earth and because of limitations in the maximum high
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voltage that we can apply conveniently.  The other two dimensions are constrained to be

less than 20 cm for a cryostat of reasonable volume.

Rectangular and cylindrical geometries are compared in Fig. 2.  When the neutrons

are scattered into 4π, most of the solid angle is close to the wall.  Thus most neutrons

emerge from the material at a small angle to the surface.  In the cylindrical geometry, this

results in the neutrons traveling only a small distance before they intersect the wall again.

In the rectangular geometry, this effect is reduced since the neutrons only intersect the next

wall that is at right angles to the one from which they emerged.  Hence, the rectangular

geometry performs somewhat better than the cylindrical one.  Both theoretical lines are

above the simulated values but are well within the 40 percent accuracy of the theory.

Figure 3 shows an analogous plot using C5H8O2 (Plexiglas) as the wall material.

Again, the agreement with the simulation is well within the 40 percent accuracy of the

theory.  The enhancement factors for C5H8O2 are smaller than those for BeO.  Even

though the average diffusion length l0 = [1 (σ inc + σabs)] is smaller for Plexiglas, its

absorption cross section is much larger than BeO.  Thus the neutrons are more likely to be

absorbed in Plexiglas than in BeO, the reflectivity is reduced, and the enhancement factor is

smaller.

Finally, to determine the optimal dimensions of the rectangular geometry, we

calculate the number of neutrons MMC , equal to the density times the volume, in the source

as a function of the enhancement factor EMC  as shown in Fig. 4.  The simulation

demonstrates that it is best to maximize the vertical dimension; so it is fixed at 10 cm.

Figure 4 shows that the other two dimensions should be as large as practical because those

13



values maximize the number of neutrons in the sample, the best condition for the EDM

experiment.

6. Conclusion

Our Monte-Carlo simulation has shown that the density of a guide fed 4He source

can be increased by over a factor of two by surrounding the source with a reflector.  In this

simulation, we have tried to determine the best geometry and materials to maximize the

gain.  We have found that within the constraints of the EDM experiment, an enhancement

of 2.2 seems to be realistic with a 10-cm × 10-cm guide and with a cavity constructed from

2-cm thick Plexiglas with interior dimensions of 10 cm in height, 20 cm in width and

20 cm in length.
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Figure Captions

Figure 1.  The layout of the cold-neutron guide, the 4He vessel, and the reflector.

Figure 2.  The enhancement factor EMC  as a function of the source-size parameter d. For

the rectangular geometry, d is the length of the two horizontal dimensions, and for the

cylindrical geometry, the diameter.  The height is fixed at 10 cm and the guide is square

with a 10-cm side.  The material is BeO of 5 cm-thickness. The solid (dashed) lines are the

theoretical prediction for rectangular (cylindrical) geometry.

Figure 3.  The analogous calculation to Fig. 2 for 2-cm thick Plexiglas C5H8O2.  The solid

(dashed) curve belongs to the theory for rectangular (cylindrical) geometry.

Figure 4.  The number of neutrons MMC  in the source is plotted as a function of the

enhancement factor EMC . The points correspond to a rectangular geometry for a source

with a height of 10 cm, a guide with a sides of 10 cm, and walls made of 2-cm thick

Plexiglas. The horizontal dimensions range from 20 cm to 10 cm in 1-cm steps.
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Table 1

Material properties used in the calculations.

Property BeO H2O C5H8O2

σabs  (barns) 40 × 10–3 3.475 13.9

σ inc  (barns) 20.0 164.0 698.0

ρ (No./cc) 7.22 × 1022 6.69 × 1022 6.58 × 1021
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Table 2

Dependence of enhancement factor on thickness.

Thickness (cm) BeO EMC H2O EMC C5H8O2 EMC

1 1.424 1.980 1.854

2 1.795 1.984 2.021

3 2.113 1.984 0.033

4 2.369 1.984 2.034

5 2.518 1.984 2.039

6 2.710 1.984 2.039

7 2.811 1.984 2.039

8 2.888 1.984 2.039

9 2.941 1.984 2.039

sat. thickness 6 cm 2 cm 2.cm

β 0.863 0.912 0.906

Et 2.810 2.286 2.277

difference (%) 3.6 13.2 11.0
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Fig. 1
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Fig. 2
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Fig. 3
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Fig. 4
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