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We report a high statistics measurement of Υ production with an 800 GeV/c proton beam on
hydrogen and deuterium targets. The dominance of the gluon-gluon fusion process for Υ production
at this energy implies that the cross section ratio, σ(p + d → Υ)/2σ(p + p → Υ), is sensitive to the
gluon content in the neutron relative to that in the proton. Over the kinematic region 0 < xF < 0.6,
this ratio is found to be consistent with unity, in striking contrast to the behavior of the Drell-Yan
cross section ratio σ(p + d)DY /2σ(p + p)DY . This result shows that the gluon distributions in the
proton and neutron are very similar. The Υ production cross sections are also compared with the
p + d and p + Cu cross sections from earlier measurements.

PACS numbers: 13.85.Qk; 14.20.Dh; 24.85.+p; 13.88.+e

In the CERN NA51 [1] and Fermilab E866/NuSea [2–
4] experiments on proton-induced dimuon production, a
striking difference was observed for the Drell-Yan cross
sections between p+p and p+d. As the underlying mech-
anism for the Drell-Yan process involves quark-antiquark
annihilation, this difference has been attributed to the
asymmetry between the up and down sea quark distribu-
tions in the proton. From the σ(p + d)DY /2σ(p + p)DY

ratios the Bjorken-x dependence of the sea-quark d̄/ū fla-
vor asymmetry has been extracted [1–4].

The Fermilab E866 dimuon experiment also recorded
a large number of Υ → µ+µ− events. In this paper, we
present results on the Υ differential cross sections for p+p
and p + d over the kinematic range 0 < pT < 3.5 GeV/c
and 0 < xF < 0.6. Unlike the electromagnetic Drell-Yan
process, quarkonium production is a strong interaction
dominated by the subprocess of gluon-gluon fusion at
this beam energy [5, 6]. Therefore, the quarkonium pro-
duction cross sections are primarily sensitive to the gluon
distributions in the colliding hadrons. The Υ production
ratio, σ(p+d → Υ)/2σ(p+p → Υ), is expected to probe
the gluon content in the neutron relative to that in the
proton [7]. While it is generally assumed that the gluon

distributions in the proton and neutron are identical, this
assumption is not based on any fundamental symme-
try and has not been tested experimentally. A possible
mechanism for generating different gluon distributions in
the proton and neutron, as pointed out by Piller and
Thomas [7], is the violation of charge symmetry in the
quark and antiquark distributions in the nucleons. A pre-
cise measurement of the σ(p + d → Υ)/2σ(p + p → Υ)
ratios would provide a constraint on the asymmetry of
gluon distribution in the proton versus that in the neu-
tron.

High statistics Υ production cross sections at 800 GeV
have been reported for p + d [8] and p + Cu [10]. The
per-nucleon cross sections for p+ d were roughly a factor
of two greater than those of p+Cu. While nuclear effects
were suggested [8] as a possible reason for this difference,
they were found [11] to be too small to explain it. The p+
p and p+d data would shed new light on this appararent
discrepancy. Moreover, Υ production in the simple p + p
and p + d systems provides the baseline information for
future searches of possible suppression of Υ production
as a signature for a quark-gluon plasma in relativistic
heavy-ion collisions [12, 13].
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FIG. 1: (color online). Dimuon mass spectrum for p + d
interactions at 800 GeV/c. Fit to the spectrum is shown as
the solid curve. Contributions from the Drell-Yan continuum
and Υ resonances are shown as dashed curves. The luminosity
weighted spectrum from the empty-target measurements is
also shown.

The experiment was performed at Fermilab using
the upgraded Meson-East magnetic pair spectrometer.
Details of the experimental setup can be found else-
where [4, 14, 15]. A primary proton beam with up to
2 × 1012 protons per 20-second beam spill was incident
upon one of three identical 50.8-cm long cylindrical stain-
less steel target flasks containing either liquid hydrogen,
liquid deuterium, or vacuum. A copper beam dump lo-
cated inside the second dipole magnet absorbed the pro-
tons that passed through the target. Downstream of the
beam dump was a 13.4 interaction-length absorber wall
of copper, carbon and polyethylene that completely filled
the aperture of the magnet. This absorber wall removed
hadrons produced in the target and the beam dump.

The targets alternated between hydrogen and deu-
terium every five beam spills with a single spill collected
on the empty flask at each target change. Beam inten-
sity was monitored by secondary-emission detectors, an
ion chamber, and quarter-wave RF cavities. Two scin-
tillator telescopes viewing the targets at 90◦ monitored
the luminosity, beam duty factor and data acquisition
live-time. The detector system consisted of four tracking
stations and a momentum analyzing magnet. The trigger
required a pair of triple hodoscope coincidences having a
pattern consistent with a muon pair from the target.

Tracks reconstructed in the drift chambers were ex-
trapolated to the target using the momentum determined
by the analyzing magnet. The target position was used
to refine the parameters of each muon track. The result-
ing rms mass resolution for the Υ resonances is ≈ 250
MeV. Monte Carlo studies show that this resolution is
dominated by the finite target length and the multiple
scattering of muons in the absorber. Figure 1 shows the

dimuon mass spectra for the high-mass data collected
with the deuterium target. The high-mass data set con-
tains approximately 20,000 Υ events.

TABLE I: Product of the Υ production cross section per nu-
cleon and the Υ → µ+µ− branching ratio (B) for p + d and
p+p interactions at 800 GeV/c. The uncertainties are statis-
tical only. The values of p0 are also listed.

xF B · dσ/dxF (pb) for pd → µ+µ−X

Υ(1S) Υ(2S) Υ(3S)

0.05 3.246±0.119 0.969±0.081 0.529±0.064

0.15 2.963±0.080 0.863±0.054 0.250±0.042

0.25 1.934±0.059 0.666±0.041 0.224±0.031

0.35 1.253±0.043 0.453±0.032 0.177±0.026

0.45 0.620±0.030 0.240±0.024 0.075±0.020

0.55 0.227±0.021 0.095±0.018 0.046±0.014

pT (GeV/c) B · dσ/dp2
T (pb/GeV2/c2) for pd → µ+µ−X

Υ(1S) Υ(2S) Υ(3S)

0.25 0.8648±0.0381 0.3921±0.0307 0.1063±0.0246

0.75 0.6347±0.0184 0.2264±0.0143 0.0804±0.0116

1.25 0.3996±0.0112 0.1225±0.0083 0.0563±0.0064

1.75 0.1968±0.0070 0.0610±0.0049 0.0228±0.0037

2.25 0.0964±0.0043 0.0281±0.0029 0.0114±0.0022

2.75 0.0416±0.0027 0.0111±0.0017 0.0050±0.0014

3.25 0.0191±0.0017 0.0029±0.0011 0.0030±0.0009

p0(GeV/c) 3.39±0.04 3.06±0.07 3.36±0.17

xF B · dσ/dxF (pb) for pp → µ+µ−X

Υ(1S) Υ(2S) Υ(3S)

0.05 3.435±0.182 0.946±0.119 0.454±0.092

0.15 3.025±0.119 0.731±0.079 0.408±0.065

0.25 1.946±0.086 0.601±0.061 0.292±0.051

0.35 1.397±0.065 0.334±0.046 0.181±0.037

0.45 0.652±0.046 0.214±0.035 0.066±0.028

0.55 0.253±0.031 0.098±0.024 0.038±0.019

pT (GeV/c) B · dσ/dp2
T (pb/GeV2/c2) for pp → µ+µ−X

Υ(1S) Υ(2S) Υ(3S)

0.25 0.8754±0.0576 0.3381±0.0448 0.1102±0.0374

0.75 0.6482±0.0276 0.2057±0.0218 0.0662±0.0164

1.25 0.3934±0.0161 0.0972±0.0119 0.0594±0.0098

1.75 0.2167±0.0107 0.0467±0.0069 0.0334±0.0058

2.25 0.1008±0.0064 0.0236±0.0042 0.0188±0.0035

2.75 0.0437±0.0040 0.0146±0.0027 0.0013±0.0012

3.25 0.0232±0.0027 0.0063±0.0019 0.0035±0.0021

p0(GeV/c) 3.47±0.05 3.20±0.15 3.22±0.18

To extract the yields of the Υ resonances, the contribu-
tions of the Drell-Yan continuum under the Υ resonances
need to be determined and subtracted. Monte Carlo
simulations for Drell-Yan events using next-to-leading
order calculations and the MRS98 [16] parton distribu-
tions, which reproduce the d̄/ū asymmetry observed in
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FIG. 2: (color online). Upper panel: B · dσ/xF (per target
nucleon) for Υ(1S), Υ(2S), and Υ(3S) production cross sec-
tions for p + d at 800 GeV/c. The E605 data [10] for p + Cu
are also shown as open symbols. Lower panel: B · dσ/xF for
Υ(1S), Υ(2S), and Υ(3S) production for p+p at 800 GeV/c.

the E866 Drell-Yan data [4, 15], were carried out. The
line shapes of the three Υ resonances were also calcu-
lated using Monte Carlo. For each xF and pT bin, the
normalization factors for the Drell-Yan and the Υ reso-
nances were adjusted to fit the data. Contributions of
dimuon events from the stainless steel target flask were
subtracted using data obtained with the empty-target
measurements. The Drell-Yan normalization factors were
found to be consistent with unity, showing good agree-
ments between the data and the Monte Carlo simulation.
The dimuon mass spectra are well described by the sum
of the various contributions considered in the analysis, as
illustrated in Fig. 1 for the p+d data. The mass spectra
for various xF and pT bins are also well described using
this fitting procedure.

The values of Bdσ/dxF per target nucleon for the three
Υ resonances in p + p and p + d collisions are shown in
Fig. 2 and listed in Tab. I (B is the branching ratio for
Υ → µ+µ− decay). The dσ/dxF differential cross sec-
tions are obtained by integrating over pT using a pT dis-
tribution which best fits the data. A ±6.5% overall nor-
malization uncertainty, common to both the p + p and
p+ d cross sections, is associated with the determination
of the beam intensity [4]. Other systematic errors due to
the uncertainty of the magnetic fields of the spectrometer
and the hodoscope efficiency are estimated to be ±3%.
Existing E605 data [10] for p + Cu collision covering
the kinematic range −0.15 < xF < 0.25 are also shown
for comparison. The good agreement between the E866

FIG. 3: (color online). B · dσ/dp2
T (per target nucleon) for Υ

production cross sections for p + d and p + p from the E866
measurement. The curves correspond to fits described in the
text.

p+d and the E605 p + Cu data is consistent with the A-
dependence measurement performed by E772 [11], which
showed that the cross section is proportional to Aα with
α ≈ 0.962. Figure 2 also shows that the relative yields
for producing the Υ(1S), Υ(2S), and Υ(3S) resonances
are very similar for p + d and p + Cu, consistent with no
significant nuclear dependences for these relative yields.
From this experiment, the ratios Bσ(Υ(2S))/Bσ(Υ(1S))
and Bσ(Υ(3S))/Bσ(Υ(1S)) over 0 ≤ xF ≤ 0.6 are de-
termined as 0.321 ± 0.012 and 0.127 ± 0.009 for p + d.

The pT dependences of the Υ(1S), Υ(2S) and Υ(3S)
cross sections are listed in Tab. I and shown in Fig. 3 for
p + d and p + p. The dσ/dp2

T differential cross sections
are obtained by integrating over the −1 < xF < 1 range
using a parametrization which best describes the data.
These pT distributions are fitted with the parametriza-
tion dσ/dp2

t = c(1 + p2
t /p2

0)
−6 [18] and the results of the

fits are shown in Fig. 3. The values of p0, listed in Tab.
I, are somewhat lower than the E605 result [10] where
p0 = 3.7 GeV/c was obtained.

Figure 4 compares the Υ(1S) production cross section
at 800 GeV/c measured for p + d in E866 and E772 [8],
and for p + Cu in E605 [10]. The E772 cross sections are
roughly a factor of two greater than those of E866 and
E605. Moreover, the shape of the E772 differential cross
sections has a steeper fall-off as xF increases. To shed
some light on this apparent discrepancy, calculations for
dσ/dxF using the color-evaporation model (CEM) [21]
have been performed. The CEM was known to be ca-
pable of describing the xF and energy dependences of
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FIG. 4: (color online). Comparison of the Υ(1S) production
cross sections between E866, E772 [8], and E605 [10]. The
solid and dashed curves correspond to the color-evaporation
model calculations using the CTEQ4M and CTEQ5L parton
distribution functions, respectively. The absolute normaliza-
tions of the calculations are adjusted to fit the E866 data.

FIG. 5: (color online). The E866 σ(p + d)/2σ(p + p) cross
section ratios for Υ resonances as a function of x2. The corre-
sponding ratios for the E866 Drell-Yan cross sections [4] are
also shown. The error bars are statistical only.

quarkonium production successfully [13, 22]. The prob-
ability for forming a given quarkonium state is treated
as a parameter in this model. As shown in Fig. 4, the
xF dependences of both the E866 and the E605 data are
well described by calculations using two different parton
distribution functions. In contrast, the E772 data show a
steeper xF dependence than the prediction of the CEM.
While the origin of the discrepancy between the E866
and the earlier E772 results is not well understood, it is
likely that the systematic errors of the absolute cross sec-
tion measurements in E772 are larger than reported [9].
The good agreement between the E866 and the E605 xF

distributions also tends to favor the E866 results.

The σ(p + d)/2σ(p + p) ratios for Υ(1S + 2S + 3S)
production are shown in Fig. 5 as a function of x2, the
Bjorken-x of the target parton. Most of the system-
atic errors cancel for these ratios, with a remaining ≈

1% error from the rate dependence and target compo-
sitions [4]. Figure 5 shows that these ratios are consis-
tent with unity, in striking contrast to the correspond-
ing values [4] for the Drell-Yan process, also shown in

Fig. 5. The difference between the Drell-Yan and the Υ
cross section ratios clearly reflect the different underly-
ing mechanisms in these two processes. The Drell-Yan
process, dominated by the u− ū annihilation subprocess,
leads to the relation σ(p + d)DY /2σ(p + p)DY ≈ 1

2
(1 +

ūn(x2)/ūp(x2)) = 1
2
(1+ d̄p(x2)/ūp(x2)), where q̄p,n refers

to the q̄ distribution in the proton and neutron, respec-
tively. For Υ production, the dominance of the gluon-
gluon fusion subprocess at this beam energy implies that
σ(p + d → Υ)/2σ(p + p → Υ) ≈ 1

2
(1 + gn(x2)/gp(x2)).

Figure 5 shows that the gluon distributions in the proton
(gp) and neutron (gn) are very similar over the x2 range
0.09 < x2 < 0.25. The overall σ(p + d → Υ)/2σ(p + p →

Υ) ratio, integrated over the measured kinematic range,
is 0.984 ± 0.026(stat.) ± 0.01(syst.). These results are
consistent with no charge symmetry breaking effect in
the gluon distributions. We emphasize that these results
are not affected by the discrepancy between the E866
and E772 p + d absolute cross sections discussed above,
since the p + d/p + p cross section ratios are accurately
measured in the E866 experiment.

In summary, we report the measurement of Υ pro-
duction for p + p and p + d interactions at 800 GeV/c.
This measurement allows a first determination of the
σ(p + d → Υ)/2σ(p + p → Υ) ratio, which comple-
ments the previous measurement of the corresponding
Drell-Yan ratio. The Υ data indicate that the gluon dis-
tributions in the proton and neutron are very similar. A
comparison of the p+d data with the previous E605 p +
Cu data shows no significant nuclear effects for Υ produc-
tion in the kinematic region near xF ∼ 0, consistent with
the previous E772 nuclear-dependence measurement.
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