Polarized Target Drell-Yan at FNAL as E906 Follow-Up?

Xiaodong Jiang Los Alamos National Laboratory

COMPASS-2006: small A_{IIT} on deuteron (p+n)

- Neutron SSA must have strong flavor dependence, in both Collins and Sivers.
- d-quark makes a large and opposite contribution compared to u-quark.

Quark Sivers distributions from HERMES Proton and COMPASS Deutron data

Forbidden before 2002 quark Sivers distribution $f_{1T}^{\perp q}(x, k_T)$

- Naive T-odd, not allowed for collinear quarks. Transverse Mom. Dep. parton distributions (TMDs).
- Imaginary piece of interference $L_q=0 \approx L_q=1$ quark wave functions.
- Gauge invariance of QCD requires Sivers function to flip sign between semiinclusive DIS and Drell-Yan.

u

 (\mathbf{d})

(u)

 $N^{\uparrow}(l, l' h)$

Ν

up-quarks favor left (L_u>0),

down-quarks favor right (L_d<0).

³He Target Single-Spin Asymmetry

To extract information on neutron, one would assume :

 ${}^{3}\text{He}^{\uparrow} = 0.865 \cdot n^{\uparrow} - 2 \times 0.028 \cdot p^{\uparrow}$

³He Collins SSA are not large.

³He Sivers SSA are smaller than expected. (d-quark Sivers ~1/2 that of u-quark.)

Could Sea-quark Sivers functions be none-zero?

• Transverse momentum sum rule:

$$\sum_{q=u,d,\bar{u},\bar{d}} f_{1T}^{\perp(1)q}(x) + f_{1T}^{\perp(1)g}(x) = 0$$

- Now that u-quark and d-quark Sivers functions are not canceling each other, there's room for considerable size sea quark and gluon Sivers functions.
- From Lattice-QCD. Sea quark's angular momentum could be not small (Keh-Fei Liu, 2010).

Sea quark Sivers function

- Existing SIDIS data do not constrain sea quark Sivers function.
- Polarized Drell-Yan single spin asymmetry provides access to ratio of quark Sivers function to quark density, i.e. in the high x_F region, target DY-SSA:

in $pp^{\uparrow} \rightarrow \mu^{+}\mu^{-}X$, $A_{N}^{DY}(x_{F}) \propto \frac{f_{1T}^{\perp \overline{u}}(x_{t})}{f_{1}^{\overline{u}}(x_{t})}$, when $x_{b} > x_{t}$. $(x_{F} = x_{beam} - x_{t \arg et})$.

A preliminary feasibility study of a polarized target Drell-Yan measurement as a follow-up of FNAL-E906. (Ming Liu and Xiaodong Jiang, 2010).

$$\frac{\sigma^{pd}}{2\sigma^{pp}}\Big|_{x1 \gg x2} = \frac{1}{2} \left| \frac{1 + \frac{1}{4u(x1)}}{1 + \frac{d(x1)}{4u(x1)} \frac{\overline{d}(x2)}{\overline{u}(x2)}} \right| \left[1 + \frac{\overline{d}(x2)}{\overline{u}(x2)} \right] = \frac{1}{2} \left[1 + \frac{\overline{d}(x2)}{\overline{u}(x2)} \right]_{Xiaod} =$$

Xiaodong Jiang, DY-Workshop-2010.

NH₃ target, assuming luminosity:

- Beam: 10¹⁹ proton (4 runs, 6 months each), 2×E906 total.
 (10¹³ proton/minute, 5 sec slow extraction. Average current ≈27 nA)
- Pol. target: 10cm NH₃, 3×JLab-Hall-C. Packing factor:0.7. (ρ*t≈9.2 g/cm²). Dilution factor ≈0.2. Target polarization: 80%.
- Beam heating power: 0.5 watt (≈2×JLab-Hall-C).
- Instantaneous rates ≈ 2.5×E906 pp. (E906 LH₂ target ρ*t=3.54 g/cm²)

$$\int L \cdot dt = 4 \times 10^{43} \ cm^{-2}, \ 4 \times 10^{10} \ pb^{-1} \ all \ nucleon, or \ 1.6 \times 10^9 \ pb^{-1} \ pol. \ pp.$$

or $\langle L \rangle_{total} = 3.3 \times 10^{35} \ cm^{-2} s^{-1}.$

For the same spectrometer and detector set up as in E906, number of DY events $\approx 8 \times E906$ -pp.

Pythia simulation, E906 setup

Xiaodong Jiang, DY-Workshop-2010.

E906 was designed to strongly favor high x_F in order to access d-bar/u-bar at high-x.

Pythia simulation: ideal setup

 P_{z1} >7.5 GeV/c, p_{z2} >7.5 GeV/c. 5°< θ_{μ} <30°. $M_{\mu\mu}$ >4.2 GeV. Same luminosity.

~8x DY events compared to E906 setup.

Although there're many detailed works to be done to realize the "ideal" setup ...

"Ideal" Setup

Constrain f_{1T}/f_1 to ±0.5% for u-quark, test Sivers function sign change to 8σ level over a wide range of x_F .

Constrain f_{1T}/f_1 to ±0.5% for u-bar.

One-type of polarized NH₃ target could fit several experiments

- Polarized Drell-Yan @FNAL.
- Hall A proton SIDIS @JLab-12 GeV.
- Polarized Drell-Yan @JPARC-50 GeV.

Requirements for polarized target:

- 10 cm target length (or 6-8cm), can take 30-100 nA proton/electron beam.
- Prefer vertical polarization, for maximum SSA. (spectrometer acceptance is always expanded in the horizontal direction).
- Detect charge particles in the forward angle: ±30°.
- Prefer frequent spin-flip to reduce detector and luminosity related systematics. At least one spin flip per 8-hour shift.

Could a JLab-type polarized ³He target work at E906 ?

- Assuming the max. density*length as in JLab-12 GeV Hall A proposal (Super-BigBite). 60 cm * 10 atm. p*t=0.08 g/cm².
- Cell diameter is large enough to avoid cell side wall contribution.
- End windows are thin enough to avoid a large dilution factor (E906 can not resolve vertex as in Hall A).

F.O.M=dilusion²*Polarization²* ρ *t ³He/NH₃≈0.013

³He gas target is too thin for Drell-Yan experiments.

Polarized Target Drell-Yan Experiments at Fermi Lab ?

Promising. Very attractive physics:

- To constrain u-quark Sivers function to ±0.5%. A clear test of Sivers function sign flip.
- To constrain u-bar Sivers function to ±0.5%.

Major technical requirements are:

- A 10 cm long pol. NH_3 target, with frequent spin-flip.
- A complete redesign of a large acceptance Drell-Yan spectrometer.
- New tracking detectors to match the higher rates and the large acceptance.

NM4/KTeV Hall

Xiaodong Jiang, DY-Workshop-2010.