

RICH DETECTOR FOR THE EIC'S FORWARD REGION PARTICLE IDENTIFICATION

M. Contalbrigo, M. Demarteau, J.M. Durham, H. Hecke(co-PI), J. Huang, M. Liu, P. Rossi, Y. Qiang(co-PI), R. Wagner, C. Zorn

an EIC R&D Proposal – Jan 13, 2014

Overview

- Motivation
- Detector Concepts and Key Technologies
 - Dual radiator RICH
 - Modular RICH
 - Aerogel
 - MCP-based LAPPD
 - GEM-based readout
- Proposed RICH R&D Project
 - Tasks and milestones
 - Budget
- Summary

- Very rich physics program:
 - Nucleon tomography and spin structure
 - Quark hadronization
 - Spectroscopy
 - Many more ...

EIC PID Requirements

- Dedicated EIC machine and spectrometer
 - Hermetic detector system
 - Large momentum range
 - Multi-particle detection in final states

Kaon Identification in SIDIS

- Semi-Inclusive Deep-Inelastic Scattering (SIDIS)
 - Golden channel to study quark's orbital motion through transverse momentum-dependent parton distributions (TMDs)
 - Kaon identification crucial for sea quark contribution
- K/ π identification in Forward(Backward) region:
 - 0 15 GeV, 4- σ separation

Solution to Forward PID

- Multiple radiators are needed to cover the broad kinematic range
 - TOF + high-n radiator (aerogel) + low-n radiator (gas)
 - Can we combine them into one detector?

EIC's Forward Region PID - an EIC R&D Proposal

Choice of Radiators

- 5 10 GeV range: Aerogel RICH
- Index ranges 1.01 ~ 1.10
- Used as RICH in HERMES, LHCb, AMS, BELLE ...

	Aerogel	C_4F_{10}	CF ₄
Emission	0.4	0.8	0.2
Chromatic	2.1	0.9	0.5
HPD	0.5	0.6	0.2
Track	0.4	0.4	0.4
Total	2.6	1.5	0.7

Single photon resolution (LHCb)

- 10 15 GeV range: heavy gas
 C₄F₁₀/C₄F₈O RICH
 - Good light yield
 - May need recycling
 - CF₄ threshold counter
 - Need Aerogel RICH to veto protons
 - Can cover much higher range as RICH

EIC's Forward Region PID - an EIC R&D Proposal

Dual Radiator Concept

- General geometry constraint: ~150 cm length
- Focusing RICH
 - Aerogel RICH: 3 10 GeV
 - C₄F₁₀: 10 20 GeV
 - Focused by a Fresnel lens
 - Readout resolution: < 2 mm
- Proximity Focusing
 - Aerogel RICH: 3 10 GeV
 - CF₄ threshold counter: 8 17 GeV
 - Signals from readout window will be mixed with photons from CF₄
 - Readout resolution: < 4 mm

Modular Concept

- Single aerogel radiator
 - Covers 3 10 GeV
 - Needs to be paired with additional gas RICH detector for higher momentum range
- Modular design for maximum flexibility
 - Very compact design, size of a shoe box
 - Can be tiled to cover different geometry, used in various experiments
 - Fresnel lens for focusing
 - Concentric rings for parallel
 tracks
 - Readout resolution: < 0.5 mm

Status of Aerogel

Aerogel strongly scatters UV lights

Slowly being improved

Transmittance:
$$T = e^{-t(1/\Lambda_{abs}+1/\Lambda_{sc})}$$

Scattering length: $\Lambda_{sc} = C \cdot \lambda^4$

EIC's Forward Region PID - an EIC R&D Proposal

Nov 2012

Micro-Channel Plate-based LAPPD

LAPPD: Large Area Picosecond Photo-Detector

EIC's Forward Region PID - an EIC R&D Proposal

ALD Micro-Channel Plate

- Conventional Pb-glass MCP
 - Single material, three functions: pore, Pb-glass resistive layer, Pb-Oxide emissive layer
 - Higher cost
 - Space charge: rate limitation
- MCP produced with Atomic Layer Deposition (ALD): Separate three functions, more freedom for optimization
 - Glass substrate with pores
 - Tuned resistive layer provides current for electric field
 - Specific emissive layer (Al₂O₃) provides secondary electron emission
- Good performance with lower cost
 - Gain > 10^7 for pair MCPs
 - Longer lifetime >> 5 C/cm²

LAPPD Readout and Status

- Transmission line readout
 - 5 mm silver strips
 - Waveform sampled on both ends at 10 GS/s
 - Lower channel count
 - Can be chained
 - < 5 mm spatial resolution

Three 20×20 cm² readout board chained

- Status of the LAPPD development
 - Funded by DOE since 2009
 - Individual components proved working
 - A working demountable prototype using Al photocathode sealed by O-ring
 - First ceramic prototype assembled with bi-alkali photocathode
 - Small glass body samples available this year

Bonus TOF feature

- Excellent time resolution of LAPPD provide additional PID power through time-of-flight
 - Use Cherenkov light generated in the entrance window
 - Single photon time resolution < 44 ps

EIC's Forward Region PID - an EIC R&D Proposal

GEM-based Readout

- Csl-coated GEM detector successfully used in PHENIX's hadron blinded-detector (HBD)
 - Csl only sensitive to UV light, not suitable for aerogel
 - Bi-alkali coating possible (Breskin *et al.*), however very sensitive to operating gas
 - Development needed for optimal combination of bi-alkali and gas mixture

Goal of the Proposed Project

- Final goal of the three-year project
 - Determine the optimal detector technology and finish the conceptual design of the RICH detector
- Five parallel tasks
 - Detector simulation and conceptual design
 - Characterization of LAPPDs
 - Improvement of LAPPD
 - Study of GEM-based readout
 - Characterization of aerogel radiators
- Further work is anticipated given the success of the project

Detector Simulation and Design

- Goals
 - Simulation of detector performance in the EIC environment
 - Provide requirements on detector components, e.g. readout performance, aerogel quality etc.
 - Optimize optics and detector design
- Approaches
 - Extended from existing EIC simulation codes/event generators
 - Model the optical elements: aerogel, lens, readout
 - Model the strip or pixel readout and embed in the EIC environment. Determine maximum pixel/strip size, multiplicity, background rate etc.
 - Develop reconstruction software

Characterization of LAPPDs

- Goal
 - Characterize the MCP-based LAPPD with the needs of the EIC
- Properties to be tested
 - Single photon detection efficiency at different wavelengths, particularly between UV and green
 - Gain with different voltages and input pulse rates
 - Time and position resolution
 - Background noise level
 - Neutron and EM radiation hardness
 - Sensitivity to magnetic field
 - Lifetime

Improvement of LAPPD

- Goal
 - Improve and balance the performance of LAPPDs towards the needs of the EIC
- List of possible items
 - High rate capability: resistance, gain ...
 - Tolerance to magnetic field: pore orientation, shielding ...
 - Thinner glass window (now 2.75 mm) to reduce background hits from primary tracks
 - Optimize existing readout for high multiplicity: narrower strips, deconvolution in FPGA ...
 - Alternative readout option if needed: pixel readout, induced signal readout ...

Study of GEM-Based Readout

- Goals
 - Find out proper combinations of photocathode coating and gas mixture of a GEM detector to allow detection of photons with wavelength > 300 nm
 - Develop a suitable readout pattern
- Approaches
 - Existing Cs-I coated GEMs for UV photons
 - Triple-GEM detector kits from CERN
 - Small vacuum chamber for bialkali photocathode deposition
 - LED sources for quantum-efficiency measurements
 - Simulation to optimize readout resolution and channel count

Characterization of Aerogel Radiator

- Goal
 - Working closely with different vendors, Novosibirsk, Matsushita-Panasonic, Aspen etc. to choose the optimal aerogel tiles for the EIC RICH detector
- List of measurements
 - Measurement of transmittance, absorption length and scattering length for different aerogel tiles
 - Measurements of refractive index and chromatic dispersion using the prism method and a monochromator coupled to a Xe-UV lamp or monochromatic lasers.
 - Refractive index mapping with gradient method
 - High precision mapping of the tiles thickness

Responsibilities and Resources

- Jefferson Lab
 - Responsibilities
 - Testing LAPPDs
 - Assist development of LAPPDs
 - Detector simulation and design
 - Provide space and manpower testing aerogels
 - Resources
 - Expertise in photosensors, aerogel RICH detector, fast electronics, , EIC simulation
 - Existing testing facilities for photodetectors: dark boxes, picosecond pulsed laser source, electronics etc.
 - Existing EM and neutron irradiation facilities
 - Existing spare 5-Tesla magnet
 - Parasitic beam test will be available
 - Will hire a postdoctoral researcher for the project

Responsibilities and Resources

- Los Alamos National Lab
 - Responsibilities
 - Study GEM-based readout
 - Detector simulation and design
 - Assist testing aerogel samples
 - Resources
 - Expertise in CsI-coated GEM detector, aerogel Cherenkov detectors, readout electronics, EIC detector simulation
 - Existing neutron and proton irradiation facilities
 - Will hire a postdoctoral researcher for the project

Responsibilities and Resources

- Argonne National Lab
 - Responsibilities
 - Fabricate LAPPD samples
 - R&D of LAPPDs
 - Resources
 - Expertise in photocathode, micro-channel plate and fast readout electronics
 - Existing facilities for fabricating and testing LAPPDs
 - Will hire a postdoctoral researcher for the project
- INFN
 - Responsibility
 - Characterization and selection of aerogel samples
 - Resources
 - Expertise in various RICH detector including aerogel based RICH

Budget

ltem	Cost			
	Year 1	Year 2	Year 3	
Jefferson Lab				
M&S – LAPPD testing	\$10,000	\$10,000	\$10,000	
Equipment – LAPPD testing	\$20,000	\$0	\$0	
Labor – Postdoc (0.7 FTE)	\$70,000	\$70,000	\$70,000	
Travel	\$10,000	\$10,000	\$10,000	
Subtotal	\$110,000	\$90,000	\$90,000	
Los Alamos National Lab				
GEM detector kits (5×\$3200)	\$16,000	\$0	\$0	
CERN RD51 SRS Readout System	\$3,000	\$0	\$0	
Components for deposition chamber	\$30,000	\$20,000	\$20,000	
Labor – Post doc (0.4 – 0.5 FTE)	\$60,000	\$80,000	\$80,000	
M&S and Travel	\$20,000	\$20,000	\$20,000	
Subtotal	\$129,000	\$120,000	\$120,000	
Argonne National Lab				
M&S – LAPPD fabrication	\$15,000	\$15,000	\$15,000	
Labor – LAPPD fabrication and R&D	\$50,000	\$50,000	\$50,000	
Travel	\$5,000	\$5,000	\$5,000	
Subtotal	\$70,000	\$70,000	\$70,000	
INFN				
M&S – Aerogel Testing	\$10,000	\$10,000	\$10,000	
Equipment – Aerogel Testing	\$30,000	\$0	\$0	
Travel	\$10,000	\$10,000	\$10,000	
Subtotal	\$50,000	\$20,000	\$20,000	
Grand Total	\$359,000	\$300,000	\$300,000	

EIC's Forward Region PID - an EIC R&D Proposal

Summary

- An aerogel-based RICH detector is proposed for the EIC's forward region particle identification
- A dual-radiator option or a combination with an additional gas Cherenkov detector is necessary to cover important momentum range of SIDIS processes
- A three-year joint effort is planned to investigate different options, find optimal solution and provide a conceptual design at the end
 - Two design options will be evaluated: dual-radiator and modular
 - Two economical novel readout options will be studied: MCP-based LAPPD and GEM-based readout
- The success of the project will become the base of the second phase: development of a prototype

1/13/2014 26

BACKUP SLIDES

Background rate in ALD-MCP

- Background rate of a 33 mm ALD-MCP with 20 µm pores and 1.2 mm thickness measured at 7×10⁶ gain
 - 33 mm diameter
 - 20 µm pores, 1.2 mm thickness
 - 0.84 counts/cm²/s, comparable with comic ray
- More test needed for full assembly with photocathode

Background hits over 3000 s

Magnetic Field Tolerance of MCPs

Typical field response of commercial MCPs

Gain of MCP with different rates

Lifetime of ALD-MCPs

- Significant improvement with preconditioning over traditional MCPs
 - Possibility due to cleaner glass substrate with much less contamination to create ion backflow

Lifetime of an older ALD-MCP pair (20 µm pore, MgO emission layer, 60:1 L/d, 8° bias) compared with conventional MCPs

Estimated Final Detector Cost

- Total Coverage ~ 10 m²
- Dual-radiator RICH using LAPPD ~ \$5M
 - Aerogel ~ \$1M
 - Gas system ~ \$1M
 - LAPPD readout ~ \$2M (MaPMT ~ \$10M)
 - Electronics ~ \$2M (MaPMT ~ \$3.5M)
 - MISC ~ \$1M

Other Readout Options

- Multi-anode MPTs
 - Well known technology, will be used in CLAS12 RICH and LHCb
 - As small as 3 mm pixel sizes
 - Sensitive to visible light
 - Low noise
 - Moderate resistance to magnetic field
 - Expensive (~\$1M for 1 m² sensor only)
- Silicon Photo-Multipliers
 - Relative new technology
 - 3 mm pixels available
 - Sensitive to visible light
 - Resistant to strong magnetic field
 - Large dark noise, needs to be cooled
 - Low neutron radiation tolerance
 - Expensive (~\$3 M for 1 m² sensor only)

Deposition Chamber/QE measurement

Characterizating Aerogel Tiles

Thickness mapping

Spectrophotometer as light source

$$\delta = \alpha - \beta + \arcsin\left\{n \cdot \sin\left[\beta - \arcsin\left(\frac{\sin\alpha}{n}\right)\right]\right\}$$

Prism method for chromatic dispersion

Gradient method for uniformity

EIC's Forward Region PID - an EIC R&D Proposal

SiPM Test Setup

SiPM and Preamplifier Adjustable Neutral Filter: Dark, 1%, 2%, 4% and 6% Collimating Lens and 470±10 nm Filter

LAPPD's 8" Photocathode

- Argonne National Lab
 - Using Burle PMT processing station with home-made photocathode deposition chamber
 - 7"×7" flat K₂CsSb photocathode was produced
 - Max QE: 22% (350 nm, average: 16%)
- UC Berkeley
 - Deposited Na₂KSb photocathode on 8" windows
 - 25% QE (350nm) with good uniformity (15%) and stability

Dual-Radiator RICH Simulation

Cherenkov hits from 3 cm aerogel

Cherenkov hits from 40 cm C_4F_{10} and 0.5 mm glass