## "How Strange is the Proton?

Neutrinos DIS and the Strange Quark Asymmetry

A collection of interesting puzzles

**Fred Olness** 

SMU

LANL P- 25 Seminar 7 September 2005 Why are we interested in the Proton structure?

\* Because it's there!

What is the structure of hadrons? What is the character of the QCD theory? ... the other forces are comparatively weak

\* Because we need this information for any hadron-induced process.

Compare these machines:

| LEP      | $e^+e^-$  | $\sqrt{s} = 200 \text{ GeV}$          |
|----------|-----------|---------------------------------------|
| HERA     | ep        | $\sqrt{s} = 314 \text{ GeV}$          |
| RHIC     | NN        | $\sqrt{s} = N \times 100 \text{ GeV}$ |
| Tevatron | p - p-bar | $\sqrt{s} = 2000 \text{ GeV}$         |
| LHC      | рр        | $\sqrt{s} = 14,000 \text{GeV}$        |

#### **The Search For New Physics**



ZEUS Collaboration, ZPC74, 207 (1997)

CDF Collaboration PRL 77, 438 (1996)

#### **Precision PDF's are essential**

**The Basic Processes** 

Deeply Inelastic Scattering (DIS)

Drell- Yan (DY)



Use data to extract PDF, then make predictions for other processes Factorization: Convolution of independent probabilities  $\tau_{INT} < \tau_{HAD}$ : If  $\tau_{INT} \sim 1/Q$  and  $\tau_{HAD} \sim 1/M$ , then  $\Rightarrow Q/M > 1$ 

What if  $Q/M \le 1$  ??? Higher Twist

#### What about Higher Twist???

### Deeply Inelastic Scattering (DIS)

## Drell-Yan (DY)



- Factorization breaks down
- Lose Universality
- No "First Principles" model
  - ... sometimes parameterized as a  $1/Q^2$  correction

#### What data are used in global fit to extract PDF's



\* Precision data essential to PDF, and hence, "new physics" searches
\* Both Fixed Target and Collider data needed to map out full {x,Q} space
\* Note "cuts" in {x,Q} space; many data points outside these cuts

Extended theoretical understanding of the "higher twist" region would allow us to include the wealth of data available in this region.

## Drell0Yan: Fermilab E866/NuSea Detector



- Forward  $x_{p}$  high mass  $\mu$ -pair spectrometer
- Liquid hydrogen and deuterium targets
- Two acceptance defining magnets (SM0, SM12)
- Also used solid W, Be, Fe targets

- Beam dump (4.3m Cu)
- Hadronic absorber (13.4 I<sub>0</sub>-Cu, C, CH<sub>2</sub>)
- Momentum analyzing magnet (SM3)
- Three tracking stations
- Muon identifier wall & 4<sup>th</sup> tracking

Donald Isenhower (ACU) DIS'04

## E866 quark sea distributions:



DIS'04

## **Drell- Yan Cross Section in large x limit**



DIS'04

J. C. Webb, et al. [NuSea Collaboration], hep-ex/0302019

#### Proton Valence Structure: d/u for large x



Is a Hadron simply a sum of its parts? The EMC Effect



We're simplying parameterizing our ignorance

## Knowledge of Nuclear Effects with Neutrinos: essentially NON-EXISTENT





 $F_2$  / nucleon changes as a function of A. Measured in  $\mu$ /e - A not in  $\nu$  - A

#### Good reason to consider nuclear effects are DIFFERENT in v - A.

- Presence of axial-vector current.
- ▼ SPECULATION: Much stronger shadowing for v -A but somewhat weaker "EMC" effect.
- ▼ Different nuclear effects for valance and sea --> different shadowing for xF<sub>3</sub> compared to F<sub>2</sub>.
- ▼ Different nuclear effects for d and u quarks.

# $MINER \nu A (Main INjector ExpeRiment v-A)$



Assume 4.0x10<sup>20</sup> in LE v beam, 8x10<sup>20</sup> in ME, 1.5x10<sup>20</sup> in HE and and 2.5x10<sup>20</sup> in HEbar

| $v_{\mu}$ Event Rates in 3 fiducial tons of CH |        |        |       |  |  |
|------------------------------------------------|--------|--------|-------|--|--|
| Process                                        | CC     | NC     | CCbar |  |  |
| Quasi-elastic                                  | 835 K  | 275 K  | 105 K |  |  |
| Resonance                                      | 1605 K | 495 K  | 130 K |  |  |
| Transition                                     | 2000 K | 635 K  | 230 K |  |  |
| DIS                                            | 4080 K | 1215 K | 455 K |  |  |
| Coherent                                       | 85 K   | 43 K   | 20 K  |  |  |
| TOTAL                                          | 8600 K | 2665 K | 940 K |  |  |

Typical Fiducial Volume = 3-5 tons CH, 0.6 ton C, ≈ 1 ton Fe and ≈ 1 ton Pb 8.6 - 14.3 M ∨ events in CH 1.0 - 1.5 M ∨ events in CH 1.4 M ∨ events in C 2.9 M ∨ events in Fe 2.9 M ∨ events in Pb

16 Million total CC events in a 4 - year run

**Examples of available statistics** 

**Transition Region** 

## 2 M events

**DIS and Structure Functions** 

**Nuclear PDF's and Effects** 

4 M DIS events (W > 2, Q > 1)

C:1.4 M, Fe: 2.9 M and Pb: 2.9 M  $_{20}$ 

For the global analysis, we prefer to reduce nuclear data to the isoscalar case; but this reduction is not trivial

## The NuTeV experiment at FNAL





Panagiotis Spentzouris <spentz@fnal.gov>

**DIS 2004** 



#### **Could this be evidence for an heavy neutral lepton?**



Three µµ events observed

< 0.07 µµ event expected

 $N^0 \rightarrow \mu\mu\nu$  ???

#### δxF<sub>3</sub> Structure Function



#### Can we make the problem go away?



PRD64: 033003, 2001

Question?

# $\Delta \mathbf{x}\mathbf{F}_3 \sim \mathbf{4} \mathbf{x} (\mathbf{s} - \mathbf{c})$

Could something strange be happening with the heavy quarks?

#### **Electroweak Mixing Angle Measurement**



Paschos-Wolfenstein Relation:

$$R^{-} \equiv \frac{\sigma(\nu_{\mu}N \rightarrow \nu_{\mu}X) - \sigma(\overline{\nu}_{\mu}N \rightarrow \overline{\nu}_{\mu}X)}{\sigma(\nu_{\mu}N \rightarrow \mu^{-}X) - \sigma(\overline{\nu}_{\mu}N \rightarrow \mu^{+}X)}$$
$$\approx \left(\frac{1}{2} - \sin^{2}\theta_{W}\right)$$

**NuTeV Result:**  $\sin^2 \theta_W^{(on-shell)} = 0.2277 \pm 0.0031(stat) \pm 0.0009(syst)$ 

**Standard Model Fit:** 

 $\sin^2 \theta_W^{(o\,n-shell)} = 0.2227 \pm 0.0004$  LEP EWWG A 3  $\sigma$  difference

G.P. Zeller, (NuTeV) et al., PRL 88:091802 (2002); PRD 65:111103 (2002)

| SOURCE OF UNCERTAINTY                 | $\delta \sin^2 	heta_W$ | $\delta R^{ u}$ | $\delta R^{\overline{ u}}$ |
|---------------------------------------|-------------------------|-----------------|----------------------------|
| Data Statistics                       | 0.00135                 | 0.00069         | 0.00159                    |
| Monte Carlo Statistics                | 0.00010                 | 0.00006         | 0.00010                    |
| TOTAL STATISTICS                      | 0.00135                 | 0.00069         | 0.00159                    |
| $ u_e, \overline{\nu}_e 	ext{ Flux} $ | 0.00039                 | 0.00025         | 0.00044                    |
| Energy Measurement                    | 0.00018                 | 0.00015         | 0.00024                    |
| Shower Length Model                   | 0.00027                 | 0.00021         | 0.00020                    |
| Counter Efficiency, Noise, Size       | 0.00023                 | 0.00014         | 0.00006                    |
| Interaction Vertex                    | 0.00030                 | 0.00022         | 0.00017                    |
| TOTAL EXPERIMENTAL                    | 0.00063                 | 0.00044         | 0.00057                    |
| Charm Production, Strange Sea         | 0.00047                 | 0.00089         | 0.00184                    |
| Charm Sea                             | 0.00010                 | 0.00005         | 0.00004                    |
| $\sigma^{\overline{ u}}/\sigma^{ u}$  | 0.00022                 | 0.00007         | 0.00026                    |
| Radiative Corrections                 | 0.00011                 | 0.00005         | 0.00006                    |
| Non-Isoscalar Target                  | 0.00005                 | 0.00004         | 0.00004                    |
| Higher Twist                          | 0.00014                 | 0.00012         | 0.00013                    |
| $R_L$                                 | 0.00032                 | 0.00045         | 0.00101                    |
| TOTAL MODEL                           | 0.00064                 | 0.00101         | 0.00212                    |
| TOTAL UNCERTAINTY                     | 0.00162                 | 0.00130         | 0.00272                    |

Largest model uncertainty arises from charm production and s(x)

s and s-bar difference can have large effect

... relative uncertainty is reduced for combination

TABLE I. Uncertainties for both the single parameter  $\sin^2 \theta_W$  fit and for the comparison of  $R^{\nu}$  and  $R^{\overline{\nu}}$  with model predictions.

#### What is relative uncertainty on PDFs' ???



CTEQ6: Pumplin, Stump, Huston, Lai, Nadolsky, Tung, JHEP 0207, 012 (2002)

#### What is true uncertainty on s-quark PDF???



this is not an exhaustive set

Warning: The Director General has determined the band of PDF's can greatly underestimate the true uncertainty



... we can do better ...

## **Dimuons are ideal signal of s(x)**



| di- muon | NuTeV | CCFR | Combined |
|----------|-------|------|----------|
| Neutrino | 5012  | 5030 | 10042    |
| Anti- Nu | 1458  | 1060 | 2518     |

\* High stats & high precision data\* Best constraints on strange quark



## **Global Fit**

Total of 1991 data points

| $\chi^2$ / DOF        | CTEQ6M | Constrained | Mixed | Free |
|-----------------------|--------|-------------|-------|------|
| CCFR Nu               | 1.02   | 0.85        | 0.79  | 0.72 |
| CCFR Nu-bar           | 0.58   | 0.54        | 0.59  | 0.59 |
| NuTeV Nu              | 1.81   | 1.70        | 1.55  | 1.44 |
| NuTeV Nu-bar          | 1.48   | 1.30        | 1.15  | 1.13 |
| BCDMS F2p             | 1.11   | 1.11        | 1.11  | 1.11 |
| BCDMS F2d             | 1.10   | 1.10        | 1.10  | 1.11 |
| H1 96/97              | 0.94   | 0.95        | 0.94  | 0.94 |
| H1 98/99              | 1.02   | 1.03        | 1.03  | 1.03 |
| ZEUS 96/97            | 1.14   | 1.14        | 1.14  | 1.15 |
| NMC F2p               | 1.52   | 1.50        | 1.51  | 1.49 |
| NMC F2d/F2p           | 0.91   | 0.91        | 0.91  | 0.91 |
| MC F2d/ F2p $< Q^2 >$ | 1.05   | 1.07        | 1.06  | 1.03 |
| CCFR F2               | 1.70   | 1.71        | 1.81  | 1.88 |
| CCFR F3               | 0.42   | 0.42        | 0.44  | 0.42 |
| E605                  | 0.82   | 0.82        | 0.82  | 0.83 |
| NA51                  | 0.62   | 0.61        | 0.52  | 0.52 |
| CDF $\ell$ Asym       | 0.82   | 0.83        | 0.82  | 0.82 |
| E866                  | 0.39   | 0.40        | 0.39  | 0.38 |
| D0 Jets               | 0.71   | 0.65        | 0.70  | 0.67 |
| CDF Jets              | 1.48   | 1.48        | 1.48  | 1.47 |
| TOTAL                 | 2173   | 2144        | 2142  | 2133 |

Reasonable  $\chi^2$  values (CTEQ6 did not fit di-muon data)

More parameters, lower value of  $\chi^2$ 

Only di-muon data is sensitive to s(x) !!!

Idea: v and v-bar data separately determine s and s-bar distributions

CTEQ6: J. Pumplin, et al., JHEP 0207:012,2002

## Sign-selected beam separates v and v: Extract s and s

 $v \xrightarrow{\qquad V^+ \qquad } c \\ N \xrightarrow{\qquad S (x) \text{ proportional to } v}$ 



- \* Other data sets are insensitive to s(x)
- \* Caution: ensure quark number sum rule is satisfied

$$\int dx \big[ s(x) - \overline{s}(x) \big] = 0$$



Higher statistics for v-data  $\Rightarrow$  stronger pull for fit

#### What does the strange PDF look like?

 $\begin{array}{c}
\mathbf{v} - \mathbf{w} \\
\mathbf{w} \\
\mathbf{v} \\
\mathbf{s} \\
\mathbf{N} \\
\mathbf{x}
\end{array}$ 

U



$$+0.40 \ge 100 \times [S^{-}] \ge -0.10$$



Olness et al.,Eur.Phys.J.C40:145-156,2005 Kretzer et al., Phys.Rev.Lett.93:041802,2004

## What is the range of the s-s Asymmetry?



|                      | #  pts | B+    | Α     | В                  | C     | B-     |                      |
|----------------------|--------|-------|-------|--------------------|-------|--------|----------------------|
| $A_1 + b$            | 12     | -0.78 | -0.99 | -0.78              | 0     | -0.78  |                      |
| $[S^{-}] \times 100$ | 100    | 0.540 | 0.312 | 0.160              | 0.103 | -0.177 |                      |
| Dimuon               | 174    | 1.30  | 1.02  | <i>1.00</i> (126)  | 1.01  | 1.26   | CCFR                 |
| Inclusive I          | 194    | 0.98  | 0.97  | 1.00 (141)         | 1.03  | 1.09   | CDHSW F <sub>3</sub> |
| Inclusive II         | 2097   | 1.00  | 1.00  | <i>1.00</i> (2349) | 1.00  | 1.00   | CDF W- asym          |

## What is the status:

- Tremendous new information on s+s
- s-s: large uncertainty affected by:
  - charm fragmentation
  - charm mass
  - PDF set

 Strong interplay between the existing experimental constraints and the global theoretical constraints, particularly the # sum



## That was LO

# How do we make heavy quarks at NLO???



# **A Thought Experiment:**

What is the ideal way to learn about quark masses and their effects on a physical process?

As a theorists, I simply run my calculation over the full range of mass values from 0 to ∞, and study the behavior.

Wouldn't it be great if the experiments could do the same???

## What's really in the Experimental control room ...



Unfortunately, in real life, we can't vary parameters continuously

## The UP Side

Quark Masses Span Wide Dynamical Range ~  $10^4$ 



We can't vary the quark mass continuously, but these ``notches'' on our control panel give us a lot of flexibility

## The DOWN Side

Theorists would much prefer that quark masses only come in 2 varieties:

m = 0: Massless case. Mass plays no dynamic role Well understood. m = ∞: Infinite case. Mass Decouples. We can forget about this object MS-Bar Massless



### **Production of Heavy Quarks: The Problem**

Which is the correct production mechanism?



| Quark | Channel |
|-------|---------|
| S     | YES     |
| t     | NO      |
| С     | ???     |
| b     | ???     |

Heavy Creation (HC)

| Quark | Channel |  |  |
|-------|---------|--|--|
| S     | NO      |  |  |
| t     | YES     |  |  |
| С     | ???     |  |  |
| b     | ???     |  |  |

If you can't beat 'em, join 'em.

## How to Join without `` Double Counting"???



### Heavy Excitation (HE)

Wait a minute! Since the heavy quark originally came from a gluon splitting, these diagrams are Double Counting



## Heavy Creation (HC)



## How to Join without `` Double Counting"???



#### Heavy Excitation (HE)

SUB removes the overlapping regions of phase space where the t- channel quark is collinear and on shell Heavy Creation (HC)



large  $P_{T}$ 

off-shell

Subtraction (SUB)

#### There is a rigorous factorization proof ...



An Example: How the separate pieces can conspire

Expand f(x) = x in Taylor Series about  $x_0$ .



# **The Moral**

It doesn't matter which expansion point you use; QCD will compensate (if you go to high enough order).

In practice ...

we are often limited to low-order calculations, so it is wise to choose your expansion point carefully.

#### NLO Analysis: In progress ...



\* Uses CSS Formalism to resum Log(q<sub>T</sub>/Q)
\* Uses ACOT Formalism to resum Log(M/Q)

Satisfies appropriate limits:

 $q_T \rightarrow Q$ , obtain usual perturbative result M  $\rightarrow 0$ , obtain usual massless result M,  $q_T \rightarrow 0$ , obtain usual Sudakov form

Theoretical basis for NLO Monte Carlo program ... provides full kinematic description



\* Di- Muon data incorporated in Global fit: Provides important information on s(x) Important for search for "New Physics" signals

\* NLO Experimental Dimuon analysis: NLO Experimental analysis in progress (D. Mason) NLO code (DISCO) is available (S. Kretzer)

\* Need to consider  $s \neq s$ -bar

This is real progress!!! We now can discriminate! Large uncertanties; must fully characterize effects; include NLO Analysis in progress

\* Resummation of large logarithms: Resummation of  $Log(q_T/Q)$  and Log(M/Q) (P. Nadolsky ...)

Thanks to: P. Nadolsky, S. Berge, W. Tung, S. Kretzer, J. Owens, S. Kuhlmann, J. Pumplin, J. Morfin,H. Lai, T.Bolton, P. Spentzouris, D. Mason, M. Shaevitz, K. McFarland, U.K. Yang, A. Barzarko

#### What is the status:

- Tremendous new information on s+s
- s-s: large uncertainty affected by:
  - charm fragmentation
  - charm mass
  - PDF set

• Strong interplay between the existing experimental constraints and the global theoretical constraints, particularly the # sum rule



\* Many outstanding puzzles, even with data already on tape: Higher Twist Up and Down PDF's at large x Nuclear corrections  $\Delta x F_3^{\nu} \sim 4x(s-c)$  $sin \theta_w$ 

\* Solving these will provide important information on proton structure

Important for search for "New Physics" signals

This is how we will make progress