Goals of Workshop

- Update each other on technical status/issues/tasks
 - simulations
 - pixel layer
 - barrel strips
 - endcap mini-strips
 - mechanical, daq, trigger, HBD/TPC/VTX studies
- Decide on R&D plan for JY03 / US FY04
- Agree to schedule for proposal to DOE
 - responsibilities and deadlines
 - » LOI to collaboration (March 03)
 - » CDR to DOE Fall/Winter 03

Intro To Physics

Physics priorities

- spin carried by gluons: ∆G vs x
- modification of gluon structure function in nuclei
- properties of earliest, densest stage of Au+Au

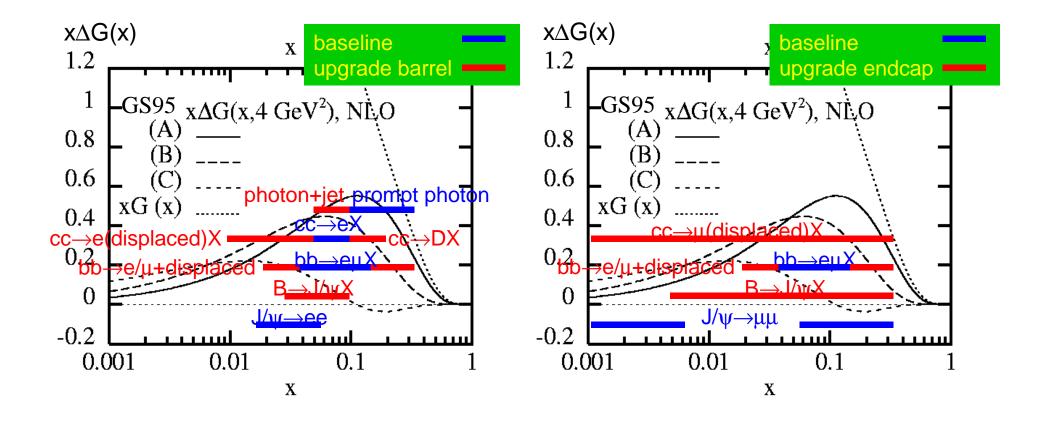

Charm

- low-pt, D=>e+X, μ +X, displaced electrons, muons
- high-pt, D=> $K\pi$

Beauty

- B=>J/ ψ => $\mu^+\mu^-$ or e⁺e⁻, displaced J/ ψ
- high-pt B=> e+X, displaced electrons

Strawman Design



- a) $1.5\% \text{ X/X}_0 \text{ per layer}$
- b) 1st layer as close to beam-pipe as possible
- c) rely on PHENIX central + muon arms for PID, momentum
- d) 4 layers => accurate, redundant DCA

preliminary design by Hytec

△G Before vs After Si Vertex (Mar 03, PLM checking/revising x-ranges)

pA Charm, Beauty Production

- Extracting gluon structure function nuclei, shadowing
 - vertex detector provides broader range in x
 - » into predicted shadowing region

```
L. Frankfurt,
                                O = 2 \text{ GeV}
                                O = 5 \text{ GeV}
      M. Strikman
Eur. Phys. J A5, 293 (99)
                               Q = 10 \text{ GeV}
                                   baseline
                                                                                                 baseline
                                   upgrade barrel
                                                                                                 upgrade endcap
                                                                       1.2
       1.2
                                                                                         Pb
                         Pb
                                                                         1
       0.8
                                                                      0.8
                                       photon+jet photon
       0.6
                                                                      0.6
                                             cc→eX
                                                                                                cc→u/displaced)X
                 cc→e(displaced)X
                                                        cc→DX
                                             bb→euX
                                                                                                            bb→euX
                                                                                     bb→e/μ+displaced
                     bb→e/μ+displaced
       0.4
                                                                      0.4
                                                                                                          B \rightarrow J/wX
                                                                                                     J/\psi \rightarrow \mu\mu
       0.2
                                                                      0.2
                                                                                      10 .3
                           -3
                                                                        10 -4
                                       -2
                                                                                                       -2
                                                                                                                    -1
          10
                       10
                                    10
                                                 10
                                                                                                   10
                                                                                                                10
                                                      X
                                                                                                                     X
```

Craig Ogilvie

Jun 2003

6

AA Charm, Beauty Production

- High-pt heavy-quarks may lose less energy in the plasma
 - Kharzeev et al. predict reduced gluon Bremsstrahlung
- Does charm flow?
 - requires going to high-pt to distinguish hydro/pythia
- Charm is critical baseline for J/ψ suppression
- Charm provides key info. for di-lepton continuum
- Possible charm enhancement in earliest stage of reaction
- Goals require broad-range in pt and y coverage
 - spectra and yields of open charm, beauty» pp, pA and AA
- Strategy
 - different decay channels → complementary pt, y ranges