Robust Low-pt Charm D=>eX

- 1) remove Dalitz e, DCA cut
- 2) or fit DCA distribution folded with resolution
- \Rightarrow charm yield low pt_D
- ⇒ reduce systematic error of existing charm result PRL 88:192303,2002

High-pt Charm

- High-pt heavy-quarks may lose less energy in the plasma
 - Kharzeev et al. predict reduced gluon Bremsstrahlung
- High-pt charm not possible via semi-leptonic decay
 - dominated by beauty decays

Open Charm via Specific Channels

- Observe specific D-mesons,
 - $D^{0} => K^{-} \pi^{+} (4\%), D^{+} => K^{-} \pi^{+} \pi^{+} (9\%), \dots$
 - reconstruct invariant mass of D,
 - extract signal over background etc.
 - measure pt spectra, yields of D⁰, D⁺, D⁻
 - » high-pt helps in multiple-scattering and acceptance
- Problems with simulation in LOI, $D^+ => K^- \pi^+ \pi^+$
 - B=0, straight-line DCA
 - no Phenix acceptance, perfect PID.....
- Summer '03 (Hua Pei) restart
 - not as much progress as we would like.....

Strategy Options

1) Full B-field in PISA to get π , K, acceptance, decays

- Kalman tracker using Si hits => DCA
 - » EDA summer '04

★2) B=0

- Fit Si hits with a line, calculate DCA to collision
- use fast filter to see if π , K in PHENIX acceptance

 \star 3) Full B-field in PISA to get π , K, acceptance, decays

- Fit Si hits with a circle
 - » assumes ~ uniform B-field in vtx region
- calculate DCA of circular track to collision (c.f. above)

Work Plan (done $= \checkmark$)

< <ncoll> * D from pythia, π , K from min.bias Au+Au EXODUS

- ✓ pt > 1 GeV/c on π , K (primary and daughters)
 - selects > 2 GeV/c D's
- ✓ <u>Kaon</u> into acceptance of TOF or aerogel
 - goal of PID cut is to reduce S/B
- S/B vs DCA cut
- Use Tony's #events collected in a Au+Au run
 - significance of signal over fluctuating background

significance =
$$\frac{S}{\sqrt{(\boldsymbol{s}_S)^2 + (\boldsymbol{s}_B)^2}} = \frac{S}{\sqrt{B}}$$

- increases with sqrt(nevents)
- plot significance vs DCA cut

backups

aerogel

Bz

Fitting

A review of fast circle and helix fitting

R. Fruhwirth

http://acat02.sinp.msu.ru/presentations/fruehwirth/talk.pdf

High-pt: Flavor Dependence Energy-loss

- @ higher pt, e and μ decay channels dominated by beauty
 - hadronic decay for high-pt charm spectra
 - » multiple-scattering, small acceptance less problematic

Au+Au 4 blue-book luminosity, 50 full days/year, yield Au+Au= AA*(yield p+p)

PHENIX QM02

Electron pt Spectra from D

Signal/background of invariant mass peak (2002 plots)

DCA of K/Pion from D0 comparing with DCA of primary K/Pion (no pt cut)

