

The PHENIX Multiplicity and Vertex Detector

David Jaffe

U.C. - Riverside Los Alamos National Laboratory

Talk Outline:

- I. Motivation Heavy Ion Physics
- II. PHENIX
- III. The Multiplicity and Vertex Detector
 - A. General Description
 - B. Rohacell Support Structure
 - C. Silicon Detectors
 - **D.** Electronics
 - E. Beam Test
 - F. dN/d simulations
 - G. Vertex Finding Algorithms
 - H. Construction Status

Nuclear Matter Phase Diagram

Heavy Ion Collisions:

The RHIC Accelerator:

Configuration:	Two concentric superconducting magnet rings (3.8 km circumference); 6 interaction regions	
Performance:	Au + Au	p + p
E _{beam} (max):	100 Gev/u	250 Gev/u
Luminosity:	2 x 10 ²⁶ cm ⁻² s ⁻¹	1.4 x 10 ³¹ cm ⁻² s ⁻¹
Completion:	Expected in Spring of 1998	

Relativistic Heavy Ion Collider (RHIC) Brookhaven National Laboratory

Scientific Objectives

Collisions of Relativistic Heavy Ion Beams create Extraordinary States of Nuclear Matter in Temperature and Density:

The Universe at a few usec after the Big Bang

Deconfinement of Quarks and Gluons = Quark Gluon Plasma i.e., Phase transition to a New State of Matter

Experiments at RHIC

Verification of such states of Nuclear Matter Exploration of a new phase of Matter Study of the Quark Structure of Matter and the theory of the strong interaction of deconfined quarks (QCD) Recreation of transitions from quarks to nucleons Insight into the physics of the early universe

Detectors at RHIC:

PHENIX: Axial Field, Two-Arm Central Detector & Two Muon Arms. Simulataneous detection of various phase transition phenomena

STAR: Solenoidal Geometry with Cylindrical TPC. Event-by-Event Analysis of hadrons and jets **PHOBOS:** "Table Top" Two-Arm Central Spectrometer with High Resolution Silicon Detectors **BRAHMS:** Small Acceptance Spectrometer with Variable

Setting. Inclusive Particle production over full rapidity range.

The PHENIX Collaboration

Country	Institution	Country	Institution
Brazil	Universidade de Sao Paulo	Russia	Institute of Theoretical & Experimental Physics
Canada	McGill University	Russia	Instituteof Nuclear Research
Germany	University of Muenster	Russia	Joint Institute for Nuclear Research
India	Banaras Hindu University	Russia	Kurchatov Institute of Atomic Energy
India	Bhabha Atomic Research Centre	Russia	Petersburg Nuclear Physics Institute
Japan	Hiroshima University	Sweden	Lund University
Japan	Institute of Nuclear Study	USA	Brookhaven National Laboratory
Japan	KEK, Nat. Lab. for High Energy Phys.	USA	Columbia University
Japan	Kyoto University	USA	Florida State University
Japan	Nagasaki Institute of Applied Science	USA	Georgia State University
Japan	Natl. Inst. of Radiological Sciences	USA	Iowa State University
Japan	RIKEN	USA	Lawrence Livermore National Laboratory
Japan	Tokyo Institute of Technology	USA	Los Alamos National Laboratory
Japan	Tokyo University of Agriculture & Technology	USA	Louisiana State University
Japan	University of Tokyo	USA	Massachusetts Institute of Technology
Japan	University of Tsukuba	USA	New Mexico State University
Japan	Waseda University	USA	Oak Ridge National Laboratory
Korea	Korea University	USA	SUNY at Stony Brook
Korea	Seoul National University	USA	University of Alabama
Korea	Yonsei University	USA	University of California at Riverside
PRC	China Institute of Atomic Energy	USA	University of New Mexico
PRC	Institute of High Energy Physics	USA	University of Tennessee
PRC	Institute of Modern Physics (IMP)	USA	Vanderbilt University
Duranta	Institute of High Energy Physics at Protving	USA	Yale University

Contributor After BNL

48 Institutions 422 Collaborators

ML Majne Kimilson, PDAC 18398

PHENIX Physics Philosophy

Simultaneous measurement of QGP signatures as function of energy density: p+p, p+A, A+A

Lepton: Direct probe of plasma Hadron: Complimentary to leptons, study hadronization

MVD Global Measurements:

 $= -\ln(\tan /2)$

$$= \frac{dN}{d} \frac{1}{R_{T^{2} 0}^{2}} \sqrt{\langle p_{T} \rangle^{2} + m^{2}}$$

expected $\approx 2 \text{ GeV/fm}^3$ Pb nucleus $\approx 0.15 \text{ GeV/fm}^3$

MVD Collaboration

Project Leader & Detector Council Member: J. Simon-Gillo (LANL) Mechanical Coordinating Physicist: J. Simon-Gillo (LANL) **Electronics Coordinating Physicist: J.P. Sullivan (LANL)** Lead Mechanical Engineer: J. Boissevain (LANL) Lead Silicon Design and Electronics Engineer: S. Hahn (LANL) Lead Integrated Chip Design Engineer: C.L. Britton (ORNL) Lead Interface Module Engineer: N. Ericson (ORNL) Systems Integration Engineer: J. Boissevain (LANL) Lead MCM Engineer: G. Smith (LANL) Lead MCM Designer: Gary Richardson (LANL) Simulation Computing: M. Bennett (LANL) **Off-line Computing: J.P. Sullivan (LANL) On-line Computing:** H. van Hecke (LANL) Database Coordinator: M. Bennett(LANL) Construction Manager: M. Bennett (LANL) Silicon Produduction and Testing Coordinator: D. Jaffe (LANL)

Institutions: Los Alamos National Laboratory, OakRidge National Laboratory, University of California at Riverside, Yonsei University, University of Alabama at Huntsville.

MVD Overview:

Physics goals:

Charged particle multiplicity Centrality trigger at LVL-1 Collision vertex position (< 2 mm) dN/d d²N/d d

Design Criteria:

Large rapidity coverage (=5)

Good azimuthal coverage & granularity

Minimal material in central arms acceptance

Key MVD parameters:

dimensions:	75cm long, 30cm radius
active regions:	inner barrel: $ z < 32$ cm, r = 5cm outer barrel: $ z < 32$ cm, r = 7.5cm endcaps: r = 5-12cm at z = +-35cm
acceptance:	full azimuthal coverage pseudorapidity coverage: < 2.5
channels:	inner barrel: 18432 outer barrel: 10240 pads: 6048 total: 34,720
weight:	11 kg, 28 lbs

radiation length: < 1% in central arms acceptance

Clamshell design - mounts to magnet pole faces. Inner and outer barrels of silicon strip detectors, 200µm, 64cm length Silicon pad endcaps @ +/- 35cm Rad length 1.1% Weight < 30lb

> Strip electronics at bottom - Multichip Module 256 channels/detector Channel count = 34,816

"C" shaped detector assemblies Support Structure - Rohacell foam 50μm kapton cables: Si to MCM

6 MCM per Air-cooling plenum section Rohacell plenum Power & Communication Bus exit base of plenum

Silicon Detector Function:

Silicon Detector Parameters;

microstrip detectors:

53 mm x 74.5 mm (outer) 53 mm x 52 mm (inner) 300 µm thick 256 channels 200 µm pitch

pad detectors:

double metal technology 252 channels (21 x 12) smallest pads: 2 x 2 mm largest pads: 4.5 x 4.5 mm coverage: 30 deg (each). r coverage: 5 - 12 cm

Double Metal Pad Detector

- * Eliminates specialized kapton cable
- * Reduces wirebonding
- * Facilitates detector probing
- * Facilitates assembly, handling
- * Increases yield
- * Sequential readout

Jehanne Simon-Gillo, *LANL* PHENIX Collaboration Meeting, July 26, 1996

Front End Electronics:

Final MCM:

Design at LANL/NIS Lead Engineer - Gary Smith Lead Designer - Gary Richardson

- 1 MCM: 256 channels 2 Xilinx 4010 8 preamps 8 AMUADCs
- - 1 opamp
 - 1 Temp sensor

Trace pitch = 54 μ m Line width = 43 μ m I/O pad pitch = 150 μ m

I/O pads gold sputtered for wire bonding

base metal + 4 trace layers = Ti - Cu - Ti

- M1 = signals, all connections off IC chips
- M2 = bus lines
- M3 = power lines
- M4 = surface mount components

AGS Beam Test - April '96

Prototype electronics (8 chan custom die), DAQ Prototype Si strip detectors, kapton cables Prototype RF enclosure

Beam Test Data

Presample:

ADC values before event Includes high & low freq noise

Post-sample:

ADC values after event Includes high & low freq noise

Post-pre:

Subtract ped and low freq noise High freq noise remains

<Chip> subtraction:

Removes high freq noise Remaining width due to ADC rresolution

Silicon microstrip detector coverage:

The pseudo-tracking algorithm:

Pseudo-tracking results:

The correlation algorithm:

The correlation algorithm (cont.):

ADC distributions:

offset determination:

rms difference

⁹⁻Apr-98 /p2hp4/usr3/sullivan/phenix/doc/eff_time.kumac

3D Vertex Finding:

Z-plane determined by previous step.

Printed circuit board version of MCM shown with a pre-prototype MCM.

MVD Construction Status:

All mechanical and electrical components prototyped or in fabrication.

Si pad detectors starting production.

Si microstrip detectors in production.

Rohacell C-cages in production at UCR.

All custom die are manufactured - KGD testing.

MCM delivery to start in mid-May.

All custom electronics boards are in fabrication.

All kapton cables are in production.

Cooling system components being procured.

Construction Complete at LANL in spring of '99.

Installation in PHENIX in June '99.

First heavy-ion beam in Oct. '99.