The Design, Layout and Testing of the Multiplicity Vertex Detector (MVD) Motherboard

Sangkoo Hahn, LeRoy Cope, Jan Boissevain and Gary Smith

10 March 1998

1. Introduction

The four motherboards inside the MVD perform the electrical and mechanical equivalent of a backbone for the system. The main functions of the motherboards are;
< distribution of timing and control signals throughout the front-end electronics,
< gathering and relaying all the mission data as well as ancillary information from the multi-chip modules and on the motherboard itself to be read out to the PHENIX experiment hall, and
< delivery of regulated power to the front-end electronics through multiple low drop-out regulators.
A schematic representation of the front-end electronics with the relative location of the motherboard inside the MVD is shown in Figure 1 below. (Please refer to schematic drawing \#10Y-XXX for details) All of the control signals, data and power to/from the front-end electronics go through the motherboards.

Figure 1. Block diagram of MVD frontend electronics
2. Mechanical Arrangement

There are two types of motherboards, Left and Right. Two motherboards per each type
are used for the MVD due to the plane-symmetry of the detector arrangement. (Go to Error! Bookmark not defined. for a more comprehensive review of the mechanical setup of MVD.) The two motherboard types are identical in electrical functions, so the layout is based on the same schematics. However, the layout, ideally a mirroring of one type to the other, has to take into account all components such as connectors and active devices, which have no mirroring pin orientations.

As shown in Figure 1 above, six power-communication (power-comm for short) boards and one daughter board plug into each motherboard. The six power-comm boards are parallel to each other when plugged into the motherboard. The daughter board, holding pad detectors at the end of the cylindrical body of the MVD, is connected to the motherboard away from the power-comm board. The cable connectors interfacing with the main power supplies and the interface modules are on the backside of the motherboard away from the powercomm boards.

3. Power Regulations and Distributions

3.1 Five different voltages are used in the front-end electronics; +5 VD (digital), +5 VA _TGV (analog, preamp), 5 VA (analog, preamp), +5 VA _Comp (analog, comparator), +2.5 VA (analog, bias). In addition, a silicon bias voltage of approximately 50 V is passed through the motherboard. Seven sets of five voltages are supplied to the six groups of power-comm boards and a daughter board through Low Drop-Out (LDO) voltage regulators
(MIC29XX0-type) as shown below. Each input is fused and each output has both ceramic and electrolytic capacitors to supply returns.

Figure 2.
Power regulation and filtering for each voltage rail.
3.2 Power Consumption.
(The following estimates are just estimates. Further testing and estimates are required to arrive at more accurate figures.)

The power consumption of the motherboard itself is as follows.

$$
\begin{array}{lcc}
+5 \mathrm{VD} & 0.2 \mathrm{~A} & 1.0 \mathrm{~W} \\
+5 \mathrm{VA} & \text { (negligible) } & \text { (negligible) } \\
-5 \mathrm{VA} & \text { (negligible) } & \text { (negligible) } \\
& & \text { Total of 1W (for one motherboard only) }
\end{array}
$$

The power estimates for one power-comm board with 6 MCM 's connected are;

+5VD	1.4 A	7 W	
+5VA_TGV 0.6 A 3 W +5VA_Comp, etc 0.8 A			
-5VA	0.2 A		4 W
+2.5VA	(small)		1 W (negligible)

Total of 15 W (for one power-comm board and 6 MCMs)
The estimated power consumption for each motherboard and all front-end electronics connected to it are as follows. The regulator head voltages (the amount of voltage drop as the current passes through the regulator) are fixed at 1.0 V for convenience.

```
+5VD:
+5VA (both preamp and comparator): 50W
-5VA (both preamp and comparator): 9W
+2.5V:
+50V Si-Bias:
```

```
    50W
```

 50W
 Total of 109 W per one motherboard, or

```
```

(negligible)

```
(negligible)
(negligible)
(negligible)
Total of 436W for the whole MVD
```

3.3 All 38voltage regulator input lines were fused with resettable fuses (Poly-Fuse model SMD250 by Raychem). All of the poly-fuses are rated for 2.5 A current at 20 degrees C .

4. Timing and Control Signals

As a main function, the motherboard distributes timing and control signals throughout the front-end electronics. Most high-speed signals such as beam clocks and mode bits do not originate nor terminate on the motherboard. However, one of the seven 4 x beam clock signals going to the Power-Comm and Daughter boards is tapped off
the pass-through signal to create the PECL (Positive ECL) clocks for all MCMs. PECL logic clock is used for the AMUADCs on MCMs for low interference to the sensitive preamp inputs as it has small and smooth voltage swings and balanced current spikes.
(Note: For logic signals with fast edges, ACT-logic is used with 22-ohm series resistor at the source end and 51ohm termination resistor on the receiver side. Other logic signals with slow edges such as serial clocks for MCM programming and serial controls for monitors use un-terminated AC-logic.)

5. LVDS data and pass-through signals

The mission data packets from each MCM are transmitted through the motherboard using low voltage differential signal lines. These lines, however, are just passed through without any buffering as the LVDS line drivers (90 C 031) on the power-comm board handles the signals. Other pass-through data lines as shown in the figure below include the current-sum signals, silicon bias voltages, the serial control and serial data to/from the MCM and the mode-bits. Fast pass-through signals were given special attention for signal integrity during the board layout for better high-frequency performance as explained later.

bits of which is decoded locally to select 1 of the 6 chips.
There are 93 analog monitor lines on the motherboard for all power supply voltages and temperatures. 12 of MAX186 8-channel multiplexer with built-in analog-to-digital converters are used for 96 total channels including three spares. The chip selection is done through 4-to-16 decoder while channel selection and conversion controls are done through serial control data.

Spy Channel Multiplexing

Analog Monitor Line Multiplexing and Digitization

Figure
4.

Multiplexing and control of the analog monitor signals

7. PCB Layout

The most important layout feature, in addition to the fact that it has to fit within a very tight MVD enclosure, is to keep the signal integrity of the fast signals as they travel through the length of the traces on the board.
The LVDS signals from each of the MCMs carry the mission data on a 4 x beam clock rate, and has the characteristic
line impedance controlled to approximately 50 ohms by using 5-mil thick FR-4 printed circuit board material and 7 -mil trace and spacing.

Similar impedance control is maintained for the clock lines of 9.5 MHZ and 38 MHz at CMOS levels, and 38 $\mathrm{MHz}-\mathrm{PECL}$ lines.

With 38 power regulators on the motherboard, it was important to conduct the heat away from the MVD enclosure through a cooling coil in thermal contact with the regulator body. The motherboard layout included copper pads for the regulator body as well as thermal vias to the backside of the board where the cooling pipe is routed.

8. Connector Pin Assignments for the Motherboard.

For a complete listing of signal assignments for connector pins on the motherboard, please go to Error! Bookmark not defined., and click on the "MVD Signals."

9. Test Plan for the Motherboard

9.1 Component placement and assembly quality
< Verify component placement (refer to the proper assembly drawing, MVD-3, Motherboard-Left, 10YxxxxxxxxDn, or MVD-n Motherboard-Right, 10Y-xxxxxxxxDn.) for correct component types and orientations.
〈 Also verify that no solder bridges exist between adjacent connections due to tight trace spacing.

9.2 Voltage regulators

Equipment required: dual output DC power supply with outputs of $+/-6.5 \mathrm{~V}$ or greater, one oscilloscope, one power input connector, one Panduit CT156F18-14DA, all wired as per motherboard schematic sheet \#2,

〈 Verify proper regulator operation by applying power to one regulator group at a time，and confirm correct output voltages．
＜Refer to motherboard schematic sheet \＃7．Energize one group and measure regulator output voltage and monitor output voltage of each regulator of that group．De－energize that group and move the input connector to the next group．When all regulator group operations have been verified，leave the power connector connected to the motherboard group as this will supply power to the motherboard electronics for the rest of the tests．

9．3 PECL differential clock line

Equipment required：one pulse generator with better than 40 MHz repetition rate，one oscilloscope
〈 Inject TTL level pulse approx．38Mhz into J9－pin 17，observe differential output pulses on pins 13 and 15 on the power－comm connectors and J35－pin 13 and 15 of the daughter board．

9．4 Spy channel multiplexer and buffer amplifier
Equipment required：One analog signal generator，one oscilloscope，and one data generator to address multiplexer channels

〈 Address one channel，inject an analog signal into that channel（pins 81 through 92 of power－comm connectors and J34－1 through－12 of the daughterboard connectors．）and verify proper operation by observing an inverted signal of unity gain at the output of the buffer amplifier．（Refer to J23 on sheet \＃2 of motherboard schematic．）
＜Observe the output J23－33 and J23－37 on the Monitor connector．
Note：Address lines SPY＿A0 through SPY＿A3 select one of sixteen positions in each ADG406 chip while address lines SPY＿A4 and SPY＿A5 select one of three ADG406 multiplexer chips．The combination of the six address lines determines the channel selection as follows．

SPY＿A5	A 4	A 3	A 2	A 1	A 0	SELECTS（x＝don＇t care）	
x	x	0	0	0	0	S 0	
x	x	0	0	0	1	S 1	
x	x	0	0	1	0	S 2	
x	x	0	0	1	1	S 3	
x	x	0	1	0	0	S 4	
x	x	0	1	0	1	S 5	
x	x	0	1	1	0	S 6	
x	x	0	1	1	1	S 7	
x	x	1	0	0	0	S 8	
x	x	1	0	0	1	S 9	
x	x	1	0	1	0	S 10	
x	x	1	0	1	1	S 11	
x	x	1	1	0	0	S 12	
x	x	1	1	0	1	S 13	
x	x	1	1	1	0	S 14	
x	x	1	1	1	1	S 15	
0	0	x	x	x	x	$\mathrm{U} 15, \mathrm{U} 16$	
0	1	x	x	x	x	$\mathrm{U} 17, \mathrm{U} 18$	
1	0	x	x	x	x	$\mathrm{U} 19, \mathrm{U} 20$	

9．5 Multiplexer ADC and serial output data
Equipment required ：One pattern generator（to generate 24 bit sequence to select one of eight analog input channels and initiate an analog to digital conversion，）an analog signal generator，one oscilloscope．（Note：One
way of addressing the serial ADC is to use a bank of switches switching between +5 v and ground, with a debounce circuit.)
a. Quick look: The objective of this test is to quickly evaluate the analog performance without the pattern generator. A quick look at ADC operation could be done by addressing the MAX186 ADC chip by clocking in all logic level-1.
(Refer to J23 on sheet two of mother board schematic. Signals involved are MON_SER_CLK,
MON_SER_DATA_IN, and MON_SER_DATA_OUT)
< Tie J23-5 to +5 V , connect clock pulse to J23-3, and observe serial data out on J23-7.
(This results in data conversion on channel 7 for single_ended inputs with external clock mode. Refer to figure 5 and figure 6 of MAX186 data sheets, not included here.)
b. Complete test: Data conversions of all eight channels of all 12 chips in sequence are performed by sending SERIAL_CONTROL_BYTE to the chips and also by addressing one of twelve MAX186 chips using ADC_A0 through ADC_A3. (Refer to J23 on sheet \#2 of motherboard schematic. Also, refer to MUX186 data sheet page 12)

The chip-select address bit combinations and selected chips are as follows.

ADC_A3	ADC_A2	ADC_A1	ADC_A0	SELECTS
0	0	0	0	U 1
0	0	0	1	U 2
0	0	1	0	U 3
0	0	1	1	U 4
0	1	0	0	U 5
0	1	0	1	U 6
0	1	1	0	U 7
0	1	1	1	U 8
1	0	0	0	U 9
1	0	0	1	U 10
1	0	1	0	U 11
1	0	1	1	U 12

The serial control bit combinations and their functions are as follows.
SERIAL_CONTROL_BYTE (MSB first, x = don't care)

MSB						LSB		
7	6	5	4	3	2	1	0	Function
x	x	x	x	x	x	0	0	Full power down
x	x	x	x	x	x	0	1	Fast power down
x	x	x	x	x	x	1	0	Internal clock mode
x	x	x	x	x	x	1	1	External clock mode
x	x	x	x	x	1	x	x	single ended inputs
x	x	x	x	1	x	x	x	unipolar
x	0	0	0	x	x	x	x	CH 0
x	0	0	1	x	x	x	x	CH 1
x	0	1	0	x	x	x	x	CH 2
x	0	1	1	x	x	x	x	CH 3
x	1	0	0	x	x	x	x	CH 4
x	1	0	1	x	x	x	x	CH 5
x	1	1	0	x	x	x	x	CH 6
x	1	1	1	x	x	x	x	CH 7
1	x	x	x	x	x	x	x	Start

9.6 Pin-to-pin resistance tests for pass-through signals

This test is to ensure the connectivity of all the pass-through signals from a pin on one connector to another pin on another connector through a printed circuit trace. These signals are LVDS, Current _Sum, Silicon Bias Voltages, and Digital and Analog Grounds (signal commons). The test is performed by connecting an ohm-meter between the designated pins on two connectors as identified by the following lists. The DC resistance should be less than $0.25-\mathrm{Ohm}$

The signals listed below are common to each group. (Refer to the GROUP TABLE for reference designator information.)

GROUP TABLE	TIM/CONT	POWER/COMM
CONN $x x$	CONN yy	

GROUP 1	J9	to	J41
GROUP 2	J10	to	J40
GROUP 3	J11	to	J39
GROUP 4	J12	to	J38
GROUP 5	J13	to	J37
GROUP 6	J14	to	J36
GROUP 7	J15	to	J35

SIGNAL PIN PIN
($\mathrm{n}=1$ thru 7) xx yy
Gn_MB0 1

Gn_MB1 3
Gn_MB2 5
Gn_MB3 7 4

Gn_MB4	9	5
Gn_MB5	11	6

Gn_L1A 13
DGND $\quad 2 \quad 11,12$
DGND 4
DGND 6

DGND $8 \quad 11,12$
DGND $10 \quad 11,12$
DGND $12 \quad 11,12$
DGND $14 \quad 11,12$
DGND $16 \quad 11,12$
DGND $18 \quad 11,12$
DGND $19 \quad 11,12$
DGND $\quad 20 \quad 11,12$

GROUP 1	J28	J41
GROUP 2	J29	J40
GROUP 3	J30	J39
GROUP 4	J31	J38
GROUP 5	J32	J37
GROUP 6	J33	J36
GROUP 7	J27	J35
SIGNAL	PIN	PIN
Gn_MCM1_S_EN	3	55
Gn_MCM2_S_EN	4	56
Gn_MCM3_S_EN	5	57
Gn_MCM4_S_EN	6	58
Gn_MCM5_S_EN	7	59
Gn_MCM6_S_EN	8	60

Gn_SERIAL_CLK	11	63
Gn_S_DATA_OUT_MCM1	15	67
Gn_S_DATA_OUT_MCM2	16	68
Gn_S_DATA_OUT_MCM3	17	69
Gn_S_DATA_OUT_MCM4	18	70
Gn_S_DATA_OUT_MCM5	19	71
Gn_S_DATA_OUT_MCM6	20	72
Gn_S_LATCH	21	75
Gn_READBACK_EN	22	76
Gn_XILINX_PROGRAM	25	77
Gn_MCM_RESET	26	78

------All Digital and Analog Ground pins should be shorted together between themselves.

DGND	1	53
DGND	2	54
DGND	9	61
DGND	10	62
DGND	13	65
DGND	14	66
DGND	23	73
DGND	24	74
DGND	$\mathrm{J} 23-1,2,4,6,11$,	
	$\mathrm{J} 23-13,17,18$,	
	$\mathrm{J} 23-25,26,27,28$	
DGND	$11,12,101,102,105,109,113,117,121,125$,	
	$129,133,137,141$	
AGND	$\mathrm{J} 23-31,32,35$,	
	$\mathrm{J} 23-36,39,40$	
		$80,93,94,110,114,118,122,126$

------------ Group 7 is a special case [Uses two 80-pin connectors instead of one 160-pin.]

G3_MCM2_DS	J26-27	J39-96
G3_MCM3_DS	J26-29	J39-97
G3_MCM4_DS	J26-31	J39-98
G3_MCM5_DS	J26-33	J39-99
G3_MCM6_DS	J26-35	J39-100
G7_MCM1_DS	J26-37	J34-15
G7_MCM2_DS	J26-39	J34-16
G7_MCM3_DS	J26-41	J34-17
G7_MCM4_DS	J26-43	J34-18
G7_MCM5_DS	J26-45	J34-19
G7_MCM6_DS	J26-47	J34-20

G1_MCM1_SB	J24-1	J41-149
G1_MCM1_SBR	J24-2	J41-150
G1_MCM2_SB	J24-3	J41-151
G1_MCM2_SBR	J24-4	J41-152
G1_MCM3_SB	J24-5	J41-153
G1_MCM3_SBR	J24-6	J41-154
G1_MCM4_SB	J24-7	J41-155
G1_MCM4_SBR	J24-8	J41-156
G1_MCM5_SB	J24-9	J41-157
G1_MCM5_SBR	J24-10	J41-158
G1_MCM6_SB	J24-11	J41-159
G1_MCM_SBR	J24-12	
G2_MCM1_SB	J24-13	J40-149
G2_MCM1_SBR	J24-14	J40-150
G2_MCM2_SB	J24-15	J40-151
G2_MCM2_SBR	J24-16	J40-152
G2_MCM3_SB	J24-17	J40-153
G2_MCM3_SBR	J24-18	J40-154
G2_MCM4_SB	J24-19	J40-155
G2_MCM4_SBR	J24-20	J40-156
G2_MCM5_SB	J24-21	J40-157
G2_MCM5_SBR	J24-22	J40-158
G2_MCM6_SB	J24-23	J40-159
G2-MCM6_SBR	J24-24	J40-160
G3_MCM1_SB	J24-25	J39-149
G3_MCM1_SBR	J24-26	J39-150
G3_MCM2_SB	J24-27	J39-151
G3_MCM2_SBR	J24-28	J39-152
G3_MCM3_SB	J24-29	J39-153
G3_MCM3_SBR	J24-30	J39-154
G3_MCM4_SB	J24-31	J39-155
G3_MCM4_SBR	J24-32	J39-156
G3_MCM5_SB	J24-33	J39-157
G3_MCM5_SBR	J24-34	J39-158
G3_MCM6_SB	J24-35	J39-159
G3_MCM6_SBR	J24-36	J39-160
G4_MCM1_SB	J24-37	J38-149
G4_MCM1_SBR	J24-38	J38-150
G4_MCM2_SB	J24-39	J38-151
G4_MCM2_SBR	J24-40	J38-152

G4_MCM3_SB	J24-41	J38-153
G4_MCM3_SBR	J24-42	J38-154
G4_MCM4_SB	J24-43	J38-155
G4_MCM4_SBR	J24-44	J38-156
G4_MCM5_SB	J24-45	J38-157
G4_MCM5_SBR	J24-46	J38-158
G4_MCM6_SB	J24-47	J38-159
G4_MCM6_SBR	J24-48	J38-160
G5_MCM1_SB	J25-1	J37-149
G5_MCM1_SBR	J25-2	J37-150
G5_MCM2_SB	J25-3	J37-151
G5_MCM2_SBR	J25-4	J37-152
G5_MCM3_SB	J25-5	J37-153
G5_MCM3_SBR	J25-6	J37-154
G5_MCM4_SB	J25-7	J37-155
G5_MCM4_SBR	J25-8	J37-156
G5_MCM5_SB	J25-9	J37-157
G5_MCM5_SBR	J25-10	J37-158
G5_MCM6_SB	J25-11	J37-159
G5_MCM6_SBR	J25-12	J37-160
G6_MCM1_SB	J25-13	J36-149
G6_MCM1_SBR	J25-14	J36-150
G6_MCM2_SB	J25-15	J36-151
G6_MCM2_SBR	J25-16	J36-152
G6_MCM3_SB	J25-17	J36-153
G6_MCM3_SBR	J25-18	J36-154
G6_MCM4_SB	J25-19	J36-155
G6_MCM4_SBR	J25-20	J36-156
G6_MCM5_SB	J25-21	J36-157
G6_MCM5_SBR	J25-22	J36-158
G6_MCM6_SB	J25-23	J36-159
G6_MCM6_SBR	J25-24	J36-160
G7_MCM1_SB	J25-25	J34-69
G7_MCM1_SBR	J25-26	J34-70
G7_MCM2_SB	J25-27	J34-71
G7_MCM2_SBR	J25-28	J34-72
G7_MCM3_SB	J25-29	J34-73
G7_MCM3_SBR	J25-30	J34-74
G7_MCM4_SB	J25-31	J34-75
G7_MCM4_SBR	J25-32	J34-76
G7_MCM5_SB	J25-33	J34-77
G7_MCM5_SBR	J25-34	J34-78
G7_MCM6_SB	J25-35	J34-79
G7_MCM6_SBR	J25-36	J34-80

