LA-UR-03-2382

A New Search for the Neutron Electric Dipole Moment

Funding Proposal for R&D

submitted to

The Department of Energy

prepared by

The EDM Collaboration

March 11, 2003

A New Search for The Neutron Electric Dipole Moment

Funding Proposal for R&D submitted to the The Department of Energy prepared by

The EDM Collaboration

D. Budker, A. Sushkov, V. Yashchuk University of California at Berkeley, Berkeley, CA 94720, USA B. Filippone, T. Ito, R. McKeown California Institute of Technology, Pasadena, CA 91125, USA D. Dutta, H. Gao Duke University, Durham, NC 27708, USA R. Golub, K. Korobkina Hahn-Meitner Institut, D-14109 Berlin, Germany J. Doyle Harvard University, Cambridge, MA 02138, USA J. Fuzi Hungarian Academy of Sciences, Budapest, Hungary D. Beck, D. Hertzog, P. Kammel, J.-C. Peng, S. Williamson University of Illinois, Urbana-Champaign, IL 61801, USA J. Butterworth Institut Laue-Langevin, BP 156 - 38042 Grenoble Cedex 9, France G. Frossati University of Leiden, NL-2300 RA Leiden, The Netherlands P. Barnes, J. Boissevain, M. Cooper, M. Espy, S. Lamoreaux, J. Long, A. Matlachov, R. Mischke, S. Penttila, J. Torgerson Los Alamos National Laboratory, Los Alamos, NM 87545, USA E. Beise, H. Breuer, P. Roos University of Maryland, College Park, MD 20742, USA T. Gentile, P. Huffman National Institute of Standards and Technology, Gaithersburg, MD 20899, USA A. Babkin, R. Duncan University of New Mexico, Albuquerque, NM 87131, USA V. Cianciolo Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA M. Hayden Simon-Fraser University, Burnaby, BC, Canada V5A 1S6

March 11, 2003

A New Search for the Neutron Electric Dipole Moment -R&D Project

CONTENTS

Summary	iv
Project Description	1
Technical Work	1
Cost and Schedule	5
Appendix A – Pre-proposal Chapter IV,	
"Proposed Measurement – Overview"	7

A New Search for the Neutron Electric Dipole Moment

R&D Project Summary

This proposal is a request for funds to perform research and development for a new search for the neutron electric dipole moment (EDM). The full experiment directly impacts our knowledge of electroweak and strong interactions by searching for physics beyond the Standard Model. The experiment uses novel techniques to achieve unprecedented sensitivity, improving current knowledge by a factor of 50 or more. In order to insure the technical feasibility of the experiment, the EDM collaboration has embarked on a multi-year R&D program whose goal is to experimentally demonstrate its crucial aspects.

The full project is described in detail in the pre-proposal, which is available on the web at <u>http://p25ext.lanl.gov/edm/pdf.unprotected/EDM_proposal.pdf</u>. This proposal focuses on the R&D project. To put the R&D work into context and make this document self-contained, Appendix A reproduces the measurement overview.

The R&D project will produce some first-class science as part of the feasibility study; these results may have applications to other fields. A prime example is the study of the diffusion coefficient of ³He in superfluid ⁴He that has already been published. These measurements are a critical step towards understanding the uniformity of the ³He in the experiment and the evaporative removal of unpolarized ³He from the bath. The technique of neutron tomography also has utility in measuring other properties of He mixtures, and the measurements also are relevant to the mechanisms of heat coupling to the ³He. New results can be expected in a number of areas, e.g. depolarization rates of ³He at low temperature, the hysteresis curves of ferromagnetic materials at sub-Kelvin temperatures, and so forth.

The EDM collaboration has been working toward a schedule that begins project construction funding in FY'05. This proposal asks for startup funds for FY'03-04. Since FY'00, substantial LDRD funds from Los Alamos have been applied toward the R&D. As the collaboration has grown, more questions can be addressed experimentally at one time, and matching funds from DOE are needed to keep to the schedule.

The request is for \$601k over two fiscal years. These funds will establish two new cryogenics test beds, one at Duke University for measurements above the lambda point of He, and one at the University of Illinois for 1-K measurements. The relaxation of ³He polarization will be measured at both facilities. The low temperature properties of ferromagnetic shields will also be examined at Illinois. In addition, the UC Berkeley group will develop the optical Kerr effect as a tool for non-invasively monitoring voltages of 0.35 MV. Preliminary studies of ferromagnetic materials will begin at Caltech on a borrowed 4-K cryostat. The storage time for ultra-cold neutrons will be

studied at NIST. Particle identification of neutron-absorption products will be studied at a dedicated dilution refrigerator at the HMI and will be examined at NIST with similar optics to the EDM experiment. Beyond the specific measurements, considerable engineering is required to bring our pre-conceptual design up to the level of detail required by a full conceptual-design report (CDR). The goal is to have the CDR ready near the end of FY'04. In the project description, we explain the subset of tasks that are covered by this proposal, but Appendix B lays out the work breakdown structure for the full R&D plan.

The EDM team comprises physicists from fifteen institutions. They possess a variety of skills that are needed to make the full measurement a success, and they are well positioned to demonstrate the feasibility during the R&D phase. The physics goals of the EDM search are compelling; they are of interest to atomic, nuclear, particle and cosmological physics. We request funds to do the R&D that will produce other interesting results as a byproduct.

A New Search for the Neutron Electric Dipole Moment

R&D Project Description

TECHNICAL WORK

Introduction

The EDM experiment will rely on measuring the precession rate of neutrons held in a bottle filled with a dilute mixture of ³He in superfluid ⁴He at 0.5 K. A thorough knowledge of the properties of materials at cryogenic temperatures is necessary. The necessary studies are being performed in a variety of cryogenic systems to allow parallel development of the project. There are ten sub-systems that are part of the R&D project, and they make good use of the manpower available across the collaboration.

The following description of the R&D work needed to prepare the EDM experiment is limited to the topics for which funding is requested during FY'03-04. This work is embedded in a larger project that is funded out of operating funds from the participating institutions. In particular, a substantial Los Alamos LDRD grant has funded several critical efforts. Duke University and the University of Illinois are making some contributions of hardware from complementary projects. Some of the studies only require scientific skills, e.g. the simulations to be performed at the University of Maryland and the Hungarian Academy of Sciences. No funds are requested for these because no new equipment is required.

Appendix B is the output of a project file for the complete R&D effort. The work breakdown structure (WBS) allows the placement of each of the elements included here into the full context of the project. Only a brief explanation of the R&D plan is presented here, but a complete set of details for both the R&D and the experiment can be found in the pre-proposal at <u>http://p25ext.lanl.gov/edm/pdf.unprotected/EDM_proposal.pdf</u>.

³He Depolarization Studies at High Concentrations

An effort is beginning at Duke to measure the polarization relaxation time of ³He in a cell of the type to be used in the EDM experiment. The deuterated-TPB wavelength shifter coating the walls is a particular concern in case it depolarizes the ³He. The measurement can be performed by using a weak magnetic field to induce the ³He spin-precession and observing the strength of a nuclear magnetic resonance (NMR) signal as a function of time. The precession is much easier to observe if the concentration of polarized ³He is relatively large. A high concentration is most easily obtained with a rubidium exchange source. Even though these sources produce only 70% polarization, the absolute signal size will be much larger than that obtainable by a quadrupole source as planned for the full EDM measurement.

These measurements of the relaxation will be made near 4 K. To study the possible temperature dependence of the relaxation rates suggested by the literature, the apparatus will be moved to the University of Illinois refrigerator, where measurements can be done down to about 1 K. From these, we will be in a good position to extrapolate the results to 0.3 K planned for the EDM measurement. The work at Duke (WBS 11.1-11.3) and Illinois (WBS 11.4-11.5 and 12) will be supported from this grant. Most of the money will buy pumps and cryogenic sensors plus some technician support at Illinois.

The Illinois cryostat will also be used for the study of ferromagnetic materials at cryogenic temperatures. If the data indicate that a measurement of the ³He relaxation time is needed at 0.3 K, the HMI refrigerator will be available in 2005.

Magnetic Shielding

The SQUIDs, which measure the precession of the ³He atoms, require extremely good magnetic isolation from the environment to see the small precession signal. In addition to a conventional magnetic shield like the ones used in the previous neutron-EDM experiments, this project will employ a superconducting magnetic shield. The superconducting shield is expected to trap stray fields during its cool down. Additionally, a superconducting shield has non-optimal boundary conditions for sustaining a uniform field inside a $\cos\theta$ magnet. Both of these difficulties can be solved if a ferromagnetic shield is used in conjunction with the $\cos\theta$ coil. There is very little data on the properties of ferromagnetic materials in the sub-Kelven range, but it is already known that the hysteresis curve is considerably modified in the transition from room temperature to liquid nitrogen temperatures. This grant will support (WBS 13) a series of measurements at 4 K and 1 K of the properties of various ferromagnetic materials to be undertaken by the Caltech and Illinois groups. The Caltech team will begin preliminary studies in a borrowed 4 K cryostat before the work moves to Illinois. In addition to cryostat, magnetic monitors and several candidate substances will be bought. The goal will be to identify an appropriate material for the boundary matching to the magnet.

UCN Production Rate, Storage Time, and Decay Product Identification

The production rates and storage times of UCNs in the EDM apparatus are crucial parameters of the experiment. The UCNs are produced in ⁴He via the superthermal process, where cold neutrons lose energy by phonon generation in the medium. The final density of UCNs is given as the product of the production rate and storage time. The rate for UCN production in ⁴He has been measured in the NIST–lifetime experiment and is in good agreement with theory. The storage time in a bottle of LHe coated with deuterated wavelength shifter is unmeasured but is expected to be long. The storage time has an important influence on the sensitivity of the overall measurement. A preliminary experiment was mounted at FP11 of the Lujan Center at LANL, and the production rate agreed with the NIST experiment within errors.

The storage time τ has the following contributions from different neutron loss mechanisms:

$$\frac{1}{\tau} = \frac{1}{\tau_{\rm n}} + \frac{1}{\tau_{\rm w}} + \frac{1}{\tau_{\rm 3}} + \frac{1}{\tau_{\rm up}} + \frac{1}{\tau_{\rm hole}}$$

The neutron lifetime is, of course, fixed at $\tau_n = 886$ s. Losses on the wall τ_w are the quantity of particular interest. The neutron losses on ³He may be eliminated by the use of ultra-pure ⁴He. Neutron upscattering has a T⁻⁷ behavior, which makes τ_{up} very long at low temperatures. The time τ_{hole} for a UCN to escape through the ⁴He-fill hole is proportional to the cell volume. A practical cell-access hole is 0.5 mm in diameter, and from kinetic theory, $\tau_{hole} \cong 200$ s for a 50-cm³ cell and > 4000 s for a several-liter cell.

The FP11 measurement is consistent with losses due to the fill hole in a 50-cm³ cell. To deduce the value of τ_w , the characteristic wall-loss time, requires a much larger storage vessel to eliminate the importance of the fill-hole losses. The NIST cryostat is well suited to this task, and the collaboration plans a measurement in the Fall of 2003 that will be funded by this proposal (WBS 2.3-2.5). A storage cell will be built to match the NIST cryostat.

Neutron decays and other beta decay processes are backgrounds for the EDM experiment, which could be removed if discriminated from absorption on ³He. The HMI EDM collaboration members have used a dedicated dilution refrigerator on a dedicated neutron beam line to provide evidence that the ³He absorption can be tagged by identifying final state particles. A new measuring cell is needed to continue this work. Furthermore, the NIST team has succeeded in reducing the signal-to-backgrounds ratio to unity for the neutron-lifetime experiment. By adding a small amount of ³He to the cell, both the neutron-decay and the absorption scintillations should be visible with optics similar to that of the EDM experiment. The collaboration will characterize this effect in the new test measurements at NIST. This work (WBS 2.4.3 and 2.6) will be funded from this proposal.

Electric Fields and High Voltage

The planned strength of the electric field is 50 kV/cm, and it has a requirement of 1% uniformity. The ANSYS finite-element code has been used to set the size of the HV electrodes. They need to be roughly 27 cm x 77 cm. The geometry described in the preproposal meets the uniformity requirement taking into account the presence of a dielectric (the measurement cell wall) in the gap.

The scheme for generating roughly 350 kV across the electrodes in a cryogenic environment cannot involve large cables to room temperature. The proposed scheme is to utilize a variable-capacitor voltage amplifier. The idea is to charge the plates to a lower voltage at small distance between capacitor plates, disconnect the supply, and increase the gap between the plates to obtain the desired voltage. A full-scale capacitor is under construction at LANL to validate the concept and to provide a HV test bed.

During the experiment, the value of the electric field must be measured. The UC Berkeley group has proposed using the optical Kerr effect to measure electric-field strength. This grant will provide a laser, optical components, electronics, and a data acquisition computer (WBS 10). They are doing preliminary tests down to 1.4 K and much lower voltages but field strengths up to 100 kV/cm in their laboratories. Eventually the Berkeley group will evaluate the technique in the LANL apparatus.

Project Development

A significant piece of this grant will be used to prepare the conceptual design report (CDR) for the experiment. The Los Alamos LDRD program is not permitted to fund the preparation of a CDR. Substantial engineering (WBS 18.9-10), estimated to be about one man-year, is needed before the full project could be expected to pass a technical, cost and schedule review.

The full proposal will contain a WBS of the construction project. The task (WBS 19) of further characterizing this major project for the CDR requires engagement of a professional project planner. A significant refinement of the cost and schedule is expected from a strong interaction of the project planner with the engineers and with vendors. This position is estimated to average two days per week throughout the R&D project.

The collaboration intends to submit a full proposal following a successful review by NSAC in their evaluation of the national neutron program. If the proposal is favorably reviewed, we are counting on critical decision zero from DOE so that we can start work on the CDR and stay on schedule for a FY'05 construction start.

Expendables

The cost (WBS 20.2) of the liquid He, LHE, for operating the cryogenics systems is also requested.

COST AND SCHEDULE

The costs for the R&D project consist of two parts. In FY'03, this proposal funds the technician and engineering time, as well as the equipment purchases, necessary to design and validate the equipment to make measurements that are required to prepare the EDM experiment. During FY'04, the costs will largely be engineering time to establish the design and costs for the CDR. Additionally, funds are requested to employ a part-time project planner to refine the WBS and baseline of the full experiment. The cost for LHe is spread over both years.

Appendix B is a schedule from Microsoft Project for the full R&D project, both the part funded by this proposal and the parts funded by existing contracts. In particular, a substantial Los Alamos LDRD grant is assumed for supporting much of the research. This grant of \$1.5M per year is being requested, with a decision for FY'04-06 expected by July 2003. Most of the LDRD funds will go for salaries, but roughly \$200k per year will go towards equipment. The rules expressly prevent the use of LDRD funds for proposal and CDR preparations.

The WBS elements funded by this request are shown in red. Appendix B has two parts. The first shows tasks and the assumptions for the calculation of the budget and schedule. The financial units are thousands of dollars. The Project file employs the same rules for contingency and lag time as discussed in the pre-proposal, which are consistent with DOE standard practices. The burden rate for each institution has been used. The second part shows the dependencies of the tasks.

Institution	Principle Investigators	FY'03 (\$k)	FY'04 (\$k)
UC Berkeley	D. Budker	38	0
Caltech	B. Filippone, R. Mckeown	25	0
Duke	H. Gao	76	2
HMI	R. Golub	21	0
Illinois	D. Beck	131	12
Los Alamos	M. Cooper, S. Lamoreaux	0	281
NIST	P. Huffman	6	9
Totals		297	304

In summary, this proposal requests funds to be given to Los Alamos to be redistributed in the following way:

The table is made by zeroing all costs unassociated with this request and by using the cash flow feature of Project.

The schedule calls for the completion of the R&D project by the end of FY'04 in time for a technical, cost and schedule review that is needed for construction funding in FY'05. A table of the R&D milestones follows:

15.4	Publication of Results	8/28/01
2.2	Preliminary Storage Time and Rate Demo	1/13/02
18.3	Pre-proposal Submission to DOE	4/2/02
3.3	3He Source Ready to Test	12/27/02
1.5	Working DR	1/11/03
18.6	R&D Proposal Submission to DOE	3/8/03
11.1.6	4 K Cryostat Assembled	6/29/03
18.8	Proposal Submission to DOE	7/7/03
14.3	Cycling Demonstrated	8/29/03
3.7	3He Source Completed	9/8/03
12.4	1 K Cryostat Ready for Use	9/29/03
9.3	HV System Ready for Tests	10/8/03
2.5	UCN Storage Demonstration	11/13/03
17.3.3	Importance of Background Quantified	11/28/03
5.5	3He/4He Cryostat Completed	11/29/03
17.1.5	Cold Neutrons Simulated	12/27/03
17.2.4	Light Collection Modeled	12/27/03
10.6	Kerr Effect Demonstrated	2/5/04
9.5	HV System Demonstrated	4/5/04
4.6	3He Transport Understood	5/27/04
7.5	Magnetic Shielding Study Complete	5/27/04
13.5	Ferromagnetic Shield Understood	6/24/04
8.3	SQUID / 3He Systems Demonstrated	7/26/04
18.11	Conceptual Design Review	9/28/04
11.6	Depolarization Lifetime Understood	2/18/05
16.7	3He Removal Understood	6/21/05

Again, the parts of the table in red pertain to the work funded by this proposal. Two elements, measurement of the ³He relaxation time at 1 K (WBS 11.6) and the demonstration of evaporative ⁴He purification (WBS 16.7), will run into FY'05. Both of these results imply modifications of the engineering plan, but neither threatens the success of the full experiment.

Summary

This proposal requests \$600k over two years to fund the R&D at the collaborating institutions that is needed to prepare the EDM experiment. This work strongly compliments work of the Los Alamos team. The proposal also funds the preparation of the CDR. Granting these funds is crucial to keeping the EDM experiment on a schedule for a construction start in FY'05. A start in FY'05 is well matched to a full evaluation of the technique at Los Alamos and the startup of the Spallation Neutron Source.

Appendix A

Chapter IV. PROPOSED MEASUREMENT — OVERVIEW

This experiment is based on a technique to measure the neutron EDM, which is qualitatively different from the strategies adopted in previous measurements (see Chapter III). Chapter IV provides an overview of the general strategy, however, many crucial technical details that are essential to the success of the measurement are deferred until Chapter V.

The overall strategy adopted here[1a], is to form a three component fluid of neutrons and 3 He atoms dissolved in a bath of superfluid 4 He at ~300 mK. When placed in an external magnetic field, both the neutron and 3 He magnetic dipoles can be made to precess in the plane perpendicular to the B field. The measurement of the neutron electric dipole moment comes from a precision measurement of the difference in the precession frequencies of the neutrons and the 3 He atoms, as modified when a strong electric field (parallel) to B is turned on (or reversed). In this comparison measurement, the neutral 3 He atom is assumed to have a negligible electric dipole moment, as expected for atoms of low atomic number [1a].

A. General Features

1. Frequency Measurement

As discussed in Chapter III, over the forty-year history of experimental searches for the neutron EDM, d_n , a number of different techniques have been employed. However, in the last two decades the measurements have focused on the use of UCN constrained to neutron traps. The primary method is to study the precession frequency of neutrons with aligned spins in the plane perpendicular to a static magnetic field, B_0 . Application of a static electric field, E_0 , parallel (anti-parallel) to B_0 can change the Larmor precession frequency, v_n , in proportion to the neutron EDM, d_n . The precession frequency is

$$v_n = -[2\mu_n B_0 \pm 2d_n E_0]/h \equiv v_0 \pm (\Delta v/2), \qquad (IV.1)$$

where the minus sign reflects the fact that $\mu_n < 0$.

Thus the frequency shift, Δv , as the direction of E_0 is reversed, is:

$$\Delta v = -4d_{n}E_{0}/h , \qquad (IV.2)$$

In the case of $B_0 = 1$ mG and $E_0 = 0$, the Larmor precession frequency is $v_0 = 2.92$ Hz. With $E_0 = 50$ kV/cm, and using a nominal value of $d_n = 4 \times 10^{-27} e$ cm, the frequency shift, as the electric field is reversed, is:

$$\Delta v = 0.19 \mu \text{Hz} = 0.66 \times 10^{-7} v_0 . \tag{IV.3}$$

Note that for the current measurement, it is the absolute frequency shift, Δv , that is critical, not the fractional frequency shift. For a known electric field, E₀, the uncertainty in d_n is:

$$\delta d_n = h \frac{\delta \Delta v}{4E_o}$$
 (IV.4)

2. Statistical and Systematic Errors

The immediate challenge of an EDM measurement of Δv is to generate as large an electric field as possible in the presence of a weak *B* field, and to measure a precession frequency shift with an absolute uncertainty $\delta \Delta v$ at the sub μ Hz level. Other issues include production of a large neutron sample size as well as having a precise knowledge of the spatial and temporal properties of B_0 and E_0 .

Consider a measurement sequence in which N_0 neutrons are collected in a trap over a time T_0 , followed by a precession measurement for a time T_m . This measurement cycle can be repeated *m* times for a total measurement time: $t = m T_m$. A single cycle takes a time: $T_0 + T_m$ and the time to perform m cycles is: m ($T_0 + T_m$).

From the uncertainty principle we have

$$\delta \Delta \nu \ge \frac{1}{2\pi T_m \sqrt{N}}$$
 per cycle

The statistical contribution to the uncertainty in the EDM for the set of m measurements is:

$$\sigma \ge \frac{\hbar/4}{E_0 T_m \sqrt{Nm}} = \frac{\hbar/4}{E_0 \sqrt{T_m Nt}} ecm .$$
(IV.5)

Here $N < N_O$ is the effective number of neutrons contributing to or detected in the measurement. Equation IV.5 is useful since it gives a lower bound on the statistical error. In practice it only gives an order of magnitude estimate for the statistical error of a generic experiment due to the ambiguity in the value of N. For the experiment discussed here, we do the proper analysis of the statistical error in Section V.H.

Consider the parameters typical of this proposed LANSCE measurement as discussed below: $E_0 = 50 \text{ kV/cm}$, $T_0 = 1000 \text{ sec}$, $T_m = 500 \text{ sec}$, $N = 4.0 \times 10^6$ neutrons / measurement cycle and $m = 5.7 \times 10^3$ repeated cycles (1500 sec / cycle and 100 days of live time). Three other parameters, also discussed below, characterize the three neutron loss mechanisms:

Beta decay: τ_{β} =887sec, wall losses: τ_{wall} =1200sec, and n - ³He absorption: τ_3 =500sec

Using Eq. (IV.5) with the overestimate, $N = N_0$, gives for one standard deviation uncertainty: $\sigma \ge 10^{-28} e$ cm. See however, the more realistic calculation (including shot noise) given in Section V.H, which gives a 2σ limit of 9 x $10^{-28} e$ cm.

One can compare this result to the error on the 1990 Smith [1], ILL measurement where they achieved:

$$d_n = -3 \pm 5 \times 10^{-26} e \text{ cm},$$

where the error is from both statistical and systematic contributions. For the more recent Harris [2], ILL measurement they achieve:

$$d_n = -1 \pm 3.6 \ge 10^{-26} e$$
 cm.

For statistical errors, note that the quality factor, $E_0 \sqrt{(T_m N)}$ in Eq. (IV.5), gives a relative reduction in σ by a factor of 50 to 100 at LANSCE, in comparison to the Smith [1] ILL measurement and to the Harris [2] ILL measurement.

The challenges in designing this trapped UCN experiment were to maximize N_0 , T_m , and E_0 . In addition it is crucial to develop uniform, stable, and well measured B_0 and E_0 fields over the sample volume since these are a major source of systematic errors. The method developed to measure the errors related to B_0 are discussed below. More generally, issues related to systematic errors, such as v x E effects, pseudo-magnetic fields, gravitational effects, spatial differences in UCN/³He distributions, etc., are discussed in detail in Section V.H.

In the technique adopted here, there are three critical issues that are addressed in this overview:

1. Optimize the UCN trap design for large N_0 , long trap lifetime, and large E_0 .

- 2. Make a precision measurement of the B_0 field, averaged over the neutron trap volume and valid for the neutron precession period.
- 3. Make a precision measurement of the neutron precession frequency, v_n .

The overall layout of the experimental apparatus is shown in Fig. IV.1

B. Neutron Trap Design

We use the strategy for loading the trap with UCN suggested first by Golub [3]. It relies on using UCN locally produced inside a closed neutron trap filled with ultra-pure, superfluid ⁴He, cooled to about 300 mK. When this neutron trap is placed in a beam of cold neutrons (E = 1 meV, v = 440 m/s, $\lambda = 8.9 \text{ Å}$, see section V.A), the neutrons interacting with the superfluid may be down-scattered to $E < 0.13 \mu \text{ eV}$, v < 5 m/s with a recoil phonon in the superfluid carrying away the missing energy and momentum.

The properly averaged UCN trapping (production) rate [4], as discussed in Section V.B, gives a nominal trapped UCN production rate, P, of

 $P \sim 1.0 \text{ UCN/ cm}^3 \text{ sec}$

In order to minimize neutron absorption by hydrogen, deuterated polystyrene coatings have been developed for the surfaces of the trap (see discussions in [5]). The goal for the mean life of a neutron in a trap filled with pure ⁴He and operated at 300 mK is about 500 sec as a result of losses by neutron beta decay and neutron wall interactions.

In $T_0 = 1000$ sec of UCN production, the neutron density will reach $\rho_n \sim 500$ UCN/cm³ in the ⁴He. Note that at other facilities with more intense sources of cold neutrons this density could be considerably higher. This UCN production technique and the UCN production rate calculations for a ⁴He filled UCN trap have been tested and validated by Golub [3], and at the neutron lifetime experiment now in progress at NIST [6] (see Section V.B).

The details of the proposed geometry for the target region of the experiment are shown in Figs. IV.1 and IV.2, with two trap volumes, one on each side of the high-voltage central electrode. Thus two orientations of the electric field for a fixed *B* field will be measured simultaneously. Superfluid ⁴He is a very good medium for high electric fields (see [7] and section V.E) and experience has shown that the deuterated polystyrene surfaces are very stable under high *E* fields [5]. Independent bench tests are planned in order to

evaluate the trap performance under these conditions. The goal is to operate at an E field strength of 50 kV/cm (about four times greater than other recent EDM measurements).

Fig IV-1. Experimental cryostat, length ~ 3.1 m. The neutron beam enters from the right. Two neutron cells are between the three electrodes. Scintillation light from the cells is monitored by the light guides and photomultipliers.

Properties of the magnetic and electric fields are discussed in Section V.E. The region in the cryostat but outside the UCN cells (see Fig. IV-1) will also be filled with ⁴He because of its good electrical insulating properties. Note: The ⁴He fluid in the region outside the two UCN cell volumes will contain ³He atoms at normal concentrations (see below). Any UCN produced there will be absorbed in coatings on the vessel wall to prevent wall activation.

C. Measurement of the *B* Field with a 3 He Co-Magnetometer

Knowledge of the *B* field environment of the trapped neutrons is a crucial issue in the analysis of systematic errors in the measurement. The ⁴He-UCN cells will sit in the uniform *B* field of a Cos Θ magnet with a nominal strength of 1 mG (up to 10 mG). The *B* field must be uniform to 1 part in 1000 (see Section V.E). These features of the *B* field must be confirmed by direct measurement in real time.

The magnetic dipole moment of ³He atoms is comparable to that of the neutron (see Table I-B) such that the ³He magnetic dipole moment is only 11% larger than that of the neutron. In addition, the EDM of the ³He atom is negligible due to the shielding from the two bound electrons [1a] i.e. Schiff shielding [8]. These properties make ³He an excellent candidate as a monitor of the *B* field in the volume where the UCN are trapped, or if B is stable, as a reference for precession frequency measurements.

To exploit this, the pure ⁴He superfluid is modified by adding a small admixture of polarized ³He (with spins initially aligned with the B_o field). The amount is $\approx 1 \text{ x}$ 10⁺¹² atoms / cm³ and fractional density of X = 0.4 x 10⁻¹⁰. This mixture is prepared in a separate reservoir and then transferred to the neutron cells. The result is a three-component fluid in the cell with densities: $\rho_n = 5.0 \times 10^{+2}/\text{ cc}$, $\rho_3 = 0.8 \times 10^{+12}/\text{ cc}$, and $\rho_4 = 2.2 \times 10^{+22}/\text{ cc}$.

The UCN cells will be adjacent to SQUID coils mounted in the ground electrodes as discussed in Section V.F and V.H. The spins of the ensembles of ³He and neutrons are aligned (see below) and are initially parallel to the B_0 field. An "RF coil", positioned with its axis perpendicular to B_0 (see Section V.E), is then used to rotate the neutron and ³He spins into the plane perpendicular to B_0 . We discuss the resulting n-³He interaction below.

As the spins of the ³He atoms and the neutrons precess in this plane, the SQUID coils will pick up the signal from the large number of precessing ³He magnetic dipoles; the corresponding neutron signal from 500 UCN/cm³ is negligible. Analysis of this

Fig IV-2. Two cell design with light guides which connect to the photomultiplier tubes outside the cryostat. Each cell has a nominal volume of 4 L.

sinusoidal signal will directly measure the ³He precession frequency, v_3 , and thus the magnetic field, B_0 , averaged over the same volume and time interval as experienced by the trapped UCN's.

$$B_0 = -\frac{\nu_3}{2\mu_3} . (IV.6)$$

In summary, the addition of the ³He atoms to the measurement cells and the SQUIDs to the electrodes, provides the opportunity for a direct measurement *in situ* of the *B* field averaged over the cell volumes and the time period of the measurement.

D. Measurement of the UCN Precession Frequency

Knowledge of the neutron EDM depends on a precision measurement of the change in the neutron precession frequency for the two orientations of the electric field. Consider N_0 UCN trapped in a cell. Because the magnitude of the precession frequency shift, Δv_n , due to the interaction of the neutron EDM with the electric field, is extremely small, <1 μ Hz, it is imperative to measure it with great precision. The technique adopted here is to make a comparison measurement in which v_n is compared to the ³He precession frequency, v_3 . The technique relies on the spin dependence of the nuclear absorption cross section for the reaction:

$$n + {}^{3}\text{He} \rightarrow p + t + 764 \text{ keV}.$$
 (IV.7)

The nuclear absorption reaction products (and the neutron beta decay products) generate scintillation light in the ⁴He fluid, which can be shifted in wavelength and detected with photomultipliers.

The absorption cross section is strongly dependent on the initial spin state of the reaction:

	Spin State Cros	ss Section, σ _{abs} , barns [10]
	(v = 2200 m/sec)	(v = 5 m/sec)
J = 0	$\sim 2 \ge 5.5 \times 10^{+3}$	$\sim 2 \ge 2.4 \times 10^{+6}$
J = 1	~ 0	~ 0

There are two options here. In **option A**, where the cell is irradiated with an unpolarized cold neutron beam, we take $\sigma_{abs} = 2.4 \times 10^6$ b as the average ³He absorption cross section for UCNs. The mean life of the neutron in the trap due to ³He absorption alone, τ_3 , is given by:

$$1/\tau_3 = \rho_3 [\sigma_{abs} v]_{UCN} = \rho_3 [\sigma_{abs} v]_{thermal} . \qquad (IV.8)$$

The ³He density, ρ_3 , is adjusted to give $\tau_3 = 500$ sec. This corresponds to:

$$\rho_3 = 0.85 \times 10^{+12}$$
 ³He / cm³.

The net neutron mean life in the trap is 250 sec, due about equally to losses by 3 He absorption, by neutron beta-decay, and by wall interactions.

In this scheme, the only neutrons that survive are those with spins parallel to the polarization vector of the ³He (and aligned with the B_0 field). In the process, half the neutrons in the trap have been lost. We are assuming here 100% ³He polarization and that there is no polarization loss in the traps.

An alternative approach, **option B**, is to pre-select the cold neutron beam according to spin direction, with an upstream spin selector, and to direct neutrons of each of the two transverse spin orientations to each of the two cells. Although there may be flux losses in the spin selector apparatus, the subsequent loss of neutrons to ³He absorption in a cell will only occur if there is not perfect ³He or neutron-beam polarization or if there is loss of polarization in the cell as time passes. Over all this approach makes the measurement less sensitive to the ³He polarization in the cells (see Section V.D).

As noted, there are three neutron loss mechanisms in the cells which lead to: $\tau_{\beta} = 887$ sec, $\tau_3 = 500$ sec, $\tau_{cell} \sim 1200$ sec. During the precession process in the cell, as a result of all three loss mechanisms, the net neutron mean life is: $1/\Gamma_{avg} = 250$ sec. On the other hand, during the UCN production phase in which a cold polarized beam of neutrons is aligned with the polarized ³He in the cell, there are no absorption losses and the mean neutron life in the cell is 500 sec. Effects due to time dependent polarization changes in the cell are neglected in this discussion (section V.C and V.H). This second strategy, **option B**, is being evaluated and is discussed in Section V.A.

To start the precession process, independent RF coils are used to reorient the neutron and the ³He spin directions into the plane perpendicular to B_0 where they both precess about B_0 , initially with their spins parallel. Thus the aligned ³He and UCN components are trapped in the cell and continue to precess for up to a time, T_m, at which point the cell is flushed so a new measurement cycle can begin.

However, because the magnetic dipole moments of the neutron and ³He are slightly different,

$$\mu_{{}^{3}\mathrm{_{He}}}/\mu_{\mathrm{n}}=1.11$$
 ,

the ³He spin vectors will gradually rotate ahead of the neutron spin vectors and destroy the alignment. As the precession continues, the absorption process will alternately appear and disappear.

This absorption process can be observed as scintillation light generated by the recoiling charged particle reaction products in the ⁴He superfluid. The scintillation light is emitted in a broad spectrum centered at 80 nm, and is easily transmitted to the wall of the cell where a deuterated tetraphenyl butadiene-doped polystyrene surface will absorb it and reemit it at 430 nm. This wave-shifted light can be collected with light pipes and transmitted to photomultiplier tubes outside of the *B* field region (see Section V.C).

The net scintillation light signal, $\Phi(t)$, due to a constant background, Φ_{bgd} , beta decay, and ³He absorption, and with polarizations P₃ and P_n, can be written as (see V.H):

$$\Phi(t) = \Phi_{bgd} + N_o \exp(-\Gamma_{avg} t) \left\{ \frac{1}{\tau \beta} + \frac{1}{\tau 3} (1 - P_3 P_n \cos[(\nu_3 - \nu_n)t + \phi]) \right\}$$

Equation IV.9

where we neglect the loss of both neutron and ³He polarization during the measurement period. Here Γ_{avg} is the overall neutron loss rate for the cell including both wall losses and neutron beta decay as well as absorption. The neutron scintillation rate has a time dependence coming from both the decaying exponential factor and the sinusoidal dependence on: $v_3 - v_n = 0.3$ Hz.

The resulting photomultiplier signal gives a direct measure of the neutron precession rate, v_n , when combined with a knowledge of v_3 .

In summary, the introduction of $0.8 \times 10^{+12}$ polarized ³He atoms/cm³ into a cell containing $5 \times 10^{+2}$ UCN/ cc allows one to directly measure the average B_0 field and to confirm the polarization of the UCN. It also permits a direct and precise measurement of the orientation of the UCN spin relative to the ³He spin as they precess over a time interval, $T_m = 500$ sec (two neutron mean cell life times). It is this time-dependent absorption sinusoidal light signal which must be carefully analyzed for changes in its period as the E_0 field is reversed.

For this two component fluid of neutrons and ³He dissolved in the ⁴He super-fluid we measure:

$$v_3 = -2\mu_3 B_0$$
, (IV.10)

obtained from the SQUID signal, and

$$v_{\rm n} = -[2\mu_{\rm n}B_{\rm 0} + 2E_{\rm 0}d_{\rm n}]/h$$
, (IV.11)

obtained from the combination of the scintillation light and the SQUID signals. Thus analysis of the shape and the time dependence of the scintillation light signal, throughout the precession period, is critical to the precision of the EDM measurement.

Note that when $E_0 = 0$, the two measurements (SQUID and scintillation signals) can be crossed checked since they should both give the common value of B_0 . Alternatively, for a stable B_0 field and when $E_0 \neq 0$, the SQUID measurement provides a reference clock against which a shift in the scintillator spectrum can be measured.

E. Discussion of Errors

The most vexing problem in the design of a neutron EDM measurement is the control of systematic errors. This is amply illustrated by the discussion of previous neutron EDM measurements reviewed in Chapter III. This overview addresses only a few aspects of the problem; the details are deferred to the main discussion in Section V.H.

1. Statistical Errors

The gross analysis of the statistical errors presented above, equation IV.5, suggests that the proposed technique gives an improvement in the figure of merit $E_0 \sqrt{(T_m N_o)}$ by a factor of 50 – 100 over recent UCN measurements at ILL. Subsidiary measurements planned for LANSCE, involving cell fabrication tests, cold neutron flux measurements, and maximum usable E field tests, will verify whether this gain can be fully realized.

2. Systematic Errors

The analysis of systematic errors is a challenging and detailed exercise and is at the heart of a successful EDM measurement. The major concerns are related to knowledge of the magnetic and electric fields (since both time-dependent field strengths and nonparallel E and B fields, have the potential to produce a false EDM signal), any differences in the two cells, and any contribution of background sources to the scintillation light spectrum.

The ³He-precession measurement allows the magnetic field to be sampled in time and space throughout the precession period and over the volume of the UCN traps. The major limitations come from the quality, stability, and background of the SQUID signals. Bench tests of the performance of the SQUID coils at these low temperatures and in the LANSCE noise environment are in progress as discussed in Section V.F. The goal is a B_0 field uniform to 0.1 % over the cell volume.

The electric field properties are equally critical. The goal for the electric field uniformity is < 1 % as discussed in Section V.E. In order to achieve the high fields consistent with the dielectric properties of the superfluid ⁴He medium, a program for performing bench tests of the maximum useable electric field is being developed. Issues of leakage currents and sparks are critical and in the end will dictate the upper limit at which the applied voltage can operate.

Other issues related to the properties of the cold neutron beam, pre-selection of the neutron spin, and the role of gamma-ray and neutron induced backgrounds, are discussed in Sections V.A and V.C. The optimum sequence in the measurement cycles in order to cancel systematic shifts in the data also has to be evaluated.

F. Measurement Cycle

By way of clarification and review, we describe the measurement sequence over the 1500 sec measurement cycle, as currently envisioned, with some additional details included.

1. Cold neutron beam preparation. Cold neutrons (v= 440 m/s, 1 meV) from the LANSCE liquid-hydrogen moderator, are transported by neutron guides through a frame overlap chopper, T_0 chopper, and a Bi filter. This system (see Section V.A) filters out unusable neutrons and gamma rays. In addition the beam is divided into two guides that transport the cold neutrons downstream and through the cryostat wall to the two cells. We are currently evaluating techniques to install a spin filter in the guide (option B in the above discussion) to permit pre-selection of the neutron spin state. Spin rotators make both beams have their spins aligned with the ³He atoms in the measuring cells. The technology to divide the beam is available, but the cost in loss of flux and beam line floor space is still being evaluated. The splitter is discussed in Section V.A and Appendix A.

For the purposes of this discussion of the measurement cycle, we assume that the beam is split into two components matched to the neutron cell sizes and that the beam spin filter is implemented. We further assume that E_0 and B_0 are on and stable during the entire cycle.

2. **4He and polarized ³He transfer to the cells.** – START OF A 5-STEP CYCLE. During a previous measurement phase (step 5 below), polarized ³He (~99% polarization and density fraction X ~ 10⁻¹⁰) from an atomic beam apparatus, is mixed with ultra-pure superfluid ⁴He in a reservoir separate from the target cells. Now, with the beam shutter closed, the mixture is transferred to the measurement cells. A small holding field continues to be used to maintain the polarization during the transfer, <10 sec. The ³He polarization is selected in the polarized source to be either parallel or anti-parallel to the magnetic field, Bo, generated by the cos Θ magnet. The ³He-spin vectors are the same in both cells, but, by construction, the electric fields are opposite of each other, regardless of the sign of the potential on the high-voltage electrode.

- 3. Cold neutron beam irradiation and production of the UCN in the cells. The beam shutter is opened, allowing the cold neutrons to irradiate the cells, some of which produce UCN. The two cells, each filled with superfluid ⁴He (2.2 x 10^{22} /cm³) and polarized ³He (0.8 x 10^{+12} /cm³), are irradiated for T_o = 1000 sec. A trapped sample of UCN is built up with a production rate of P = ~ 1 UCN / (cm³ sec). The mean life of these neutrons in the cells is ~ 500 sec due to both beta decay and wall losses alone. Assuming that the initial sample of neutrons has been fully polarized, the large n-³He cross section in the J = 0 state will reduce only slightly the population of neutrons during the UCN collection process. Neutrons properly aligned with the ³He will suffer no absorption losses. The number density produced in T_o = 1000 sec grows to $\rho_n \sim 500$ UCN/ cm³ (actually 430/ cm³ when corrected for beta decay and cell losses) in each of two cells of volume = 4000 cm³ per cell. At the end of the UCN fill period, the beam shutter is closed.
- 4. Rotation of both magnetic moments into the transverse plane. The spin vectors are rotated into the plane perpendicular to B_0 and E_0 by pulsing an "RF" coil at 3.165 Hz for 1.58 sec (see Section V. E). Both the neutrons and the ³He start to precess about B_0 in order to conserve angular momentum.
- 5. Precession Frequency measurements. The critical precession frequency measurement occurs over the next $T_m = 500$ seconds. At the start of the measurement there are 4 x 10⁺⁶ neutrons in the two traps. The SQUID detectors measure the ³He precession, v₃, at about 3 Hz over a set of 1500 signal periods. The scintillator detection system measures $v_3 v_n = 0.3$ Hz over a set of 150 signal periods. The neutron sample continues to decrease with a mean life of 250 sec due to all loss mechanisms and is reduced to 116 UCN/cm³, i.e. a total of 0.5 x 10 ⁺⁶ neutrons at the end of the measurement cycle. As discussed in detail in Section V.H, this corresponds to a sensitivity of

 $\sigma \sim 7 \ge 10^{-26}$ e cm in one cycle.

In parallel with the precession measurement, the mixing reservoir is refilled with pure 4 He and polarized 3 He in the correct proportions.

6. **Empty the cells.** Valves are opened to drain the cells in about 10 sec, and the ³He-⁴He mixture is sent to a recovery reservoir for purification. END OF THE CYCLE, return to step #2.

7. **Repeated cycles.** A single cycle takes about To + $T_m = 1500$ sec plus some transfer times. The cycle can be repeated about m = 5.7 x 10⁻³ time in 100 days, which gives a two σ limit of $< 9 \times 10^{-28}$ e cm in one hundred days.

Over this 100-day period one expects to follow a program of electric field reversals, spin reversals, magnetic field reversals, etc. to study and remove systematic effects.

Altogether this measurement involves the interplay of many technical and practical issues: polarized UCN and ³He production, precision measurements of frequencies, UCN trap design, electric and magnetic field measurements, etc. These issues are discussed in detail in the following segment, Chapter V.

References

- [1a] I B. Khriplovich, S.K. Lamoreaux, "CP Violation Without Strangeness", Springer-Verlag, (1997).
- [1] K. F. Smith et al., *Phys. Lett.* **234B**, 191 (1990).
- [2] P. G. Harris et al, *Phys. Rev. Lett.* **82**, 904 (1999).
- [3] P. Ageron et al, Phys Lett. A66, 469 (1978), R. Golub et al, Z. Phys.B51, 187 (1983), R. Golub, J. Phys. 44, L321 (1983); Proc. 18th Int. Conf. on Low Temperature Physics, Pt. 3 Invited Papers (Kyoto, Japan), 2073 (1987), R. Golub and S. Lamoreaux, Phy. Rep. 237, 1 (1994).
- [4] S. K. Lamoreaux and R. Golub, *JETP Lett.* 58, 793 (1993).
- [5] S. K. Lamoreaux, Institut Laue-Langevin Internal Report 88LAOIT, 1988, unpublished; J.M. Pendlebury, *Nuc. Phys.* A546, 359 (1992).
- [6] P. R. Huffman et al., *Nature* **403**, 62 (2000).
- [7] J. Gerhold, *Cryogenics* **12**, 370 (1972).
- [8] L. I. Schiff, *Phys. Rev.* 132, 2194 (1963); Quantum Mechanics, third edition (New York: McGraw-Hill, 1968).
- [9] Superfluid He is a well-known scintillator for:
 electrons: M. Stockton et al., *Phys. Rev. Lett.* 24, 654 (1970).
 alpha particles: H. A. Roberts and F. L. Hereford, *Phys. Rev.* A7, 284 (1973). D. N. McKinsey et al, *NIM* B132, 351 (1997), D. N. McKinsey et al, *Phys. Rev.* A59, 200 (1999).

[10] Als-Nielsen and R. Dietrich, *Phys. Rev.* 133, B925 (1964), Passel and Schirmer, *Phys. Rev.* 150, 146 (1966). Appendix B

Work Breakdown Structure from Microsoft Project

ID	WBS	Task Name	Base Cost	% Contingency	% Burden	Loaded Cost	Duration	Lag	Qtr 4
1	1	Dilution Refrigerator (DR)	\$390.30	0	0	\$516.17	830 days	0 days	
2	1.1	Specify Refrigerator	\$37.50	25	80	\$84.38	195 days	0 days	10/4
3	1.2	Procure Refrigerator	\$303.00	5	3.5	\$329.29	365 days	180 days	
4	1.3	Acceptance Test Refrigerator	\$40.80	25	80	\$91.80	60 days	30 days	
5	1.4	Ancillary Equipment	\$9.00	15	3.5	\$10.71	30 days	23 days	
6	1.5	Working DR	\$0.00	0	0	\$0.00	0 days	0 days	
7	2	UCN Storage Time / Rate in Cell	\$32.80	0	0	\$82.49	1123 days	0 days	
8	2.1	Measurement in LANSCE Beam	\$15.80	0	0	\$56.88	347 days	0 days	
9	2.1.1	Setup of Old Dilution Refrigerator	\$7.90	100	80	\$28.44	180 days	0 days	
10	2.1.2	Setup at Beam	\$7.90	100	80	\$28.44	15 days	0 days	
11	2.1.3	Measurements	\$0.00	0	0	\$0.00	30 days	0 days	
12	2.1.4	Analysis of Data	\$0.00	0	0	\$0.00	30 days	0 days	
13	2.2	Preliminary Storage Time and Rate Demo	\$0.00	0	0	\$0.00	0 days	0 days	
14	2.3	Meaurement Cell	\$3.00	0	0	\$4.61	361 davs	0 davs	
15	2.3.1	Design Cell	\$0.00	0	0	\$0.00	31 days	15 days	
16	2.3.2	Fabricate Cell	\$1.00	50	0	\$1.50	31 days	15 days	
17	233	Fabricate TPB	\$2.00	50	35	\$3.11	10 days	10 days	
18	2.3.4	Assemble Cell	\$0.00	0	0.0	\$0.00	10 days	5 dave	
19	2.4	Measurements in NIST Beam	\$0.00	0	0	\$0.00	121 days	0 days	
20	241	Setup at Beam	\$0.00	0	0	\$0.00	31 dave	15 dave	
20	242	Storage Time Measurements	ψ0.00 ¢0.00	0	0	00.00 00.00	30 days	15 days	
21	243	Particle ID Measurement	φ0.00 ¢0.00	0	0	00.00 00.00	30 days	15 days	
23	244	Analyze Data	φ0.00 \$0.00	0	0	\$0.00 \$0.00	30 days	15 days	
23	2.4.4	LICN Storage Demonstration	\$0.00	0	0	\$0.00	0 days	0 days	
24	2.5	Partiala ID faceibility	\$0.00	50	0	\$0.00	265 days	0 days	
20	2.0	Herande 3He System	\$14.00	50	0	\$21.00	1072 days	0 days	
20	3	Room Injector	\$319.00	0	0	\$317.40	627 days	0 days	
21	3.1		\$55.00	0	0	\$109.25	394 days	0 days	
20	2111	Design Cryogenics	\$30.40 \$12.50	50	0	\$32.10	21 days	0 days	40/2
20	3112	Procurement Cryogenics	\$36.00	25	35	\$35.75	122 days	61 days	10/2
21	2112		\$30.00	50	3.5	\$40.36 \$11.95	122 days	190 days	
20	212	Assemble Cryogenics	\$7.90	50	0	\$11.85	272 days	0 days	
32	3.1.2		\$37.40	50	0	\$77.07	212 days	0 days	
33	3.1.2.1		\$12.50	50	00	\$33.75	ST days	0 days	
34	3.1.2.2		\$17.00	25	3.5	\$21.99	61 days	0 days	
35	3.1.2.3	Filter / Analyzer	\$7.90 \$220.90	50	00	\$21.33		160 days	
27	3.2	Pinter / Analyzer	\$220.00	50	0	\$343.04 \$22.75	21 days	0 days	40/2
37	3.2.1	Design Magnets	\$12.50	50	00	\$33.75	31 days	0 days	10/2
30	3.2.2	Accomption Magneto	\$100.00	23	3.5	\$129.30	180 days	90 days	11
39	3.2.3	Assemble Magnets	\$7.90	50	80	\$21.33	180 days	90 days	4.010
40	3.2.4	Design Vacuum System	\$12.50	50	80	\$33.75	92 days	45 days	10/2
41	3.2.5		\$00.00	25	3.5	\$103.50	160 days	90 days	
42	3.2.0	Assemble Vacuum System	\$7.90	50	80	\$21.33	61 days	30 days	
43	3.3 2.4		\$0.00	0	0	\$0.00	U days	U days	
44	3.4		\$5.00 @5.00	0	0	\$5.18 05.40	osz days	u days	10/0
45	3.4.1		\$5.00	0	3.5	\$5.18	ou days	U days	10/2
46	3.4.2		\$0.00	0	0	\$0.00	15 days	U days	
4/	3.5 3.6	weasure Source Intensity	\$0.00	0	0	\$0.00	120 days	120 days	
48	3.0		\$0.00	0	0	\$0.00		u days	
49	3.0.1	Build RF Spin Flipper	\$0.00	0	0	\$0.00	30 days	22 days	
50	3.6.2	Inteasure Spin Dependent Transmission	\$0.00	0	0	\$0.00	120 days	120 days	
51	3.1	3He Source Completed	\$0.00	0	0	\$0.00	0 days	0 days	
52	4	Polarized 3He Transport System	\$17.90	0	0	\$36.86	970 days	U days	
53	4.1	Design Transport	\$0.00	0	0	\$0.00	60 days	60 days	
54	4.2	Procure Transport Parts	\$10.00	50	3.5	\$15.53	60 days	30 days	
55	4.3	Build Transport into Cryostat	\$7.90	50	80	\$21.33	62 days	30 days	
56	4.4	Measure 3He Transferred to Cryostat	\$0.00	0	0	\$0.00	90 days	90 days	
57	4.5	Measure 3He Polarization in Cryostat	\$0.00	0	0	\$0.00	90 days	90 days	
58	4.6	3He Transport Understood	\$0.00	0	0	\$0.00	0 days	0 days	

ID	WBS	Task Name	Base Cost	% Contingency	% Burden	Loaded Cost	Duration	Lag	Qtr
59	5	Polarized 3He/4He Cryostat	\$48.30	0	0	\$106.17	789 days?	0 days	
60	5.1	Purchase Cryostat	\$5.00	25	3.5	\$6.47	60 days	30 days]
61	5.2	Design Cryostat Insert	\$12.50	50	80	\$33.75	60 days	60 days]
62	5.3	Fabricate Cryostat Insert	\$15.00	50	3.5	\$23.29	60 days	30 days]
63	5.4	Assemble Cryostat	\$15.80	50	80	\$42.66	30 days	15 days	1
64	5.5	3He/4He Cryostat Completed	\$0.00	0	0	\$0.00	1 day?	0 days	1
65	6	SQUID System Prototype	\$4.00	0	0	\$5.18	332 days	0 days	1
66	6.1	Procure SQUIDs	\$4.00	25	3.5	\$5.18	90 days	45 days	1
67	6.2	Assemble SQUID Electronics	\$0.00	0	0	\$0.00	90 days	45 days	1
68	6.3	Install SQUID system Prototype	\$0.00	0	0	\$0.00	62 days	30 days	1
69	7	Superconducting Shield Prototype	\$17.90	0	0	\$36.86	605 days	0 days	1
70	7.1	Design Shield	\$0.00	0	0	\$0.00	92 days	60 days	1
71	7.2	Procure Shield	\$10.00	50	3.5	\$15.53	90 days	45 days	1
72	7.3	Install Shield into DR	\$7.90	50	80	\$21.33	62 days	30 days	
73	7.4	Measure Shielding Factor, Trapped Fields	\$0.00	0	0	\$0.00	90 days	90 days	
74	7.5	Magnetic Shielding Study Complete	\$0.00	0	0	\$0.00	0 days	0 days	
75	8	SQUID Performance	\$0.00	0	0	\$0.00	240 days	0 days	
76	8.1	Measure SQUID Response to 3He	\$0.00	0	0	\$0.00	60 days	60 days	1
77	8.2	SQUID Measurements vrs Concentration	\$0.00	0	0	\$0.00	60 davs	60 davs	-
78	8.3	SQUID / 3He Systems Demonstrated	\$0.00	0	0	\$0.00	0 davs	0 davs	-
79	9	High Voltage System Prototype	\$123.10	0	n	\$214.35	1282 days?	0 dave	-
80	91	Power Supply	\$0.00	0	0	\$0.00	30 days	30 days	1
81	92	HV System	\$123.10	0	0	\$214.35	495 days	0 days	
82	0.21		\$19.00	0	80	\$34.20	180 days	90 days	-
02	0.2.1	Broouro HV Porto	\$19.00	0	00	\$99.62	120 days	0 days	-
0.0	9.2.2		\$08.50	0	0	\$00.02	120 days	0 uays	-
84	9.2.2.1	Fabricate Outer Vacuum Vessel	\$16.50	25	3.5	\$21.35	90 days	20 days	-
65	9.2.2.2	Fabrocate Linz Shield	\$12.00	25	3.5	\$15.53	90 days	45 days	-
80	9.2.2.3		\$35.00	25	3.5	\$45.28	90 days	45 days	-
87	9.2.2.4	Procure HV Standotts	\$5.00	25	3.5	\$6.47	120 days	30 days	-
88	9.2.3	Assemble HV System	\$31.60	50	80	\$85.32	90 days	90 days	-
89	9.2.4	Fabricate Alternate Electrodes	\$4.00	50	3.5	\$6.21	90 days	45 days	-
90	9.3	HV System Ready for Tests	\$0.00	0	0	\$0.00	1 day?	0 days	
91	9.4	Perform HV Tests	\$0.00	0	0	\$0.00	90 days	90 days	
92	9.5	HV System Demonstrated	\$0.00	0	0	\$0.00	0 days	0 days	
93	10	Kerr Effect Tests	\$25.00	0	0	\$38.28	492 days	0 days	
94	10.1	Procure Laser	\$15.00	25	3.5	\$19.41	90 days	45 days	
95	10.2	Procure Electronics and Optics	\$10.00	25	51	\$18.88	90 days	45 days	
96	10.3	R&D at 4 K	\$0.00	0	0	\$0.00	180 days	180 days	
97	10.4	Measurements at 50 kV/cm 4 K	\$0.00	0	0	\$0.00	30 days	30 days	
98	10.5	Measurements at 1.5 K	\$0.00	0	0	\$0.00	30 days	30 days]
99	10.6	Kerr Effect Demonstrated	\$0.00	0	0	\$0.00	0 days	0 days]
100	11	3He Depolarization in Cell	\$64.50	0	0	\$80.63	871 days?	0 days	1
101	11.1	Construct 4 K Cryostat	\$64.50	0	0	\$80.63	271 days?	0 days	1
102	11.1.1	Build Exchange 3He Polarizing Cell	\$25.00	25	0	\$31.25	90 days	45 days	1
103	11.1.2	Procure Cryostat	\$34.50	25	0	\$43.13	90 days	45 days	1
104	11.1.3	Fabricate Magnetic Shield	\$0.00	0	0	\$0.00	90 days	45 days	1
105	11.1.4	Fabricate NMR Apparatus	\$5.00	25	0	\$6.25	45 days	45 days	1
106	11.1.5	4 K Cryostat Assembly	\$0.00	0	0	\$0.00	90 days	45 days	1
107	11.1.6	4 K Cryostat Assembled	\$0.00	0	0	\$0.00	1 day?	0 days	1
108	11.2	Measure Depolarization at 4 K	\$0.00	0	0	\$0.00	90 days	90 days	1
109	11.3	Depolarization Measured for Coatings 4 K	\$0.00	0	0	\$0.00	60 days	60 days	1
110	11.4	Measure Depolarization at 1 K	\$0.00	0	0	\$0.00	90 days	90 days	-
111	11.5	Depolarization Measured for Coatings 1 K	\$0.00	0	0	\$0.00	60 davs	60 davs	1
112	11.6	Depolarization Lifetime Understood	\$0.00	0	0	\$0.00	0 davs	0 davs	-
113	12	Refurbish 1 K Crvostat	\$83.00	0	n	\$128.43	363 days?	0 dave	-
114	121	Procure Cryostat Instrumentation / Pumps	\$53.00	10	0	\$58.30	eveb 00	0 dave	-
115	12.2	Modify 1 K Chyostat	\$20.00	10	0	¢30.30	00 days	0 days	-
140	12.2		φ30.00	25	0/	φ/U.13	90 days	50 days	-
116	12.3	Test T K Cryostat	\$0.00	0	0	\$0.00	90 days	45 days	1

ID	WBS	Task Name	Base Cost	% Contingency	% Burden	Loaded Cost	Duration	Lag	Qtr 4
117	12.4	1 K Cryostat Ready for Use	\$0.00	0	0	\$0.00	1 day?	0 days	
118	13	Ferromagnetic Shield Prototype	\$15.00	0	0	\$18.75	450 days	0 days	
119	13.1	Procure Shield Materials	\$5.00	25	0	\$6.25	90 days	45 days	
120	13.2	Procure Magnetic Monitoring Electronics	\$10.00	25	0	\$12.50	90 days	45 days	
121	13.3	Measure Ferromagnetic Shields at 4 K	\$0.00	0	0	\$0.00	90 days	45 days	
122	13.4	Measure Ferromagnetic Shields at 1 K	\$0.00	0	0	\$0.00	90 days	90 days	
123	13.5	Ferromagnetic Shield Understood	\$0.00	0	0	\$0.00	0 days	0 days	
124	14	3He Purification System	\$23.70	0	0	\$53.32	606 days	0 days	
125	14.1	Refurbish HMI Purifier	\$15.80	25	80	\$35.55	92 days	330 days	
126	14.2	Test Purifier	\$7.90	25	80	\$17.77	62 days	62 days	
127	14.3	Cycling Demonstrated	\$0.00	0	0	\$0.00	0 days	0 days	
128	14.4	Produce Two Cell Fills of Ultrapure 4He	\$0.00	0	0	\$0.00	60 days	30 days	
129	15	3He Diffusion Coefficient Measurement	\$15.80	0	0	\$28.44	331 days?	0 days	
130	15.1	Setup at FP 11a	\$15.80	0	80	\$28.44	30 davs	0 davs	10/2
131	15.2	Diffusion with Neutron Tomography	\$0.00	0	0	\$0.00	30 days	0 days	11
132	15.3	Data Analysis and Paper Writing	\$0.00	0	0	\$0.00	150 days	0 days	
133	15.4	Publication of Results	\$0.00	0	0	\$0.00	1 day?	0 days	
134	16	Evanorative 3He Removal	\$49.55	0	0	\$155.43	630 days	0 days	
135	16.1	Design Evaporation Chamber	\$12.50	100	80	\$45.00	60 days	60 days	
136	16.2	Eabricate Evaporation Chamber	\$10.00	100	3.5	\$20.70	60 days	30 days	
100	10.2		\$10.00 \$6.05	100	3.0	\$20.70	20 days	30 days	
137	10.3	Echainete COLUD Medifications	\$0.23	100	00	\$22.50	30 days	30 days	
138	10.4	Fabricate SQUID Modifications	\$5.00	100	3.5	\$10.35	30 days	30 days	
139	10.5	Assemble Evaporation Chamber and DR	\$15.80	100	80	\$50.66	60 days	30 days	
140	16.6	Measure 3He Removal Performance	\$0.00	0	0	\$0.00	60 days	60 days	
141	16.7	3He Removal Understood	\$0.00	0	0	\$0.00	0 days	0 days	
142	17	Monte-Carlo Simulations	\$0.00	0	0	\$0.00	575 days?	0 days	
143	17.1	Cold Neutron Simulations LANSCE / SNS	\$0.00	0	0	\$0.00	361 days?	0 days	
144	17.1.1	Iransport Through Beam Elements	\$0.00	0	0	\$0.00	180 days	180 days	
145	17.1.2	Beam State Selector	\$0.00	0	0	\$0.00	180 days	180 days	
146	17.1.3	Transport in the Cryostat	\$0.00	0	0	\$0.00	180 days	180 days	
147	17.1.4	Activation Neutrons	\$0.00	0	0	\$0.00	180 days	180 days	
148	17.1.5	Cold Neutrons Simulated	\$0.00	0	0	\$0.00	1 day?	0 days	
149	17.2	UCN and Light Collection Simulations	\$0.00	0	0	\$0.00	361 days?	0 days	
150	17.2.1	UCN Absorption on 3He	\$0.00	0	0	\$0.00	180 days	180 days	
151	17.2.2	Light Propogation in Cell Walls	\$0.00	0	0	\$0.00	180 days	180 days	
152	17.2.3	Light Propogation in Guides	\$0.00	0	0	\$0.00	180 days	180 days	
153	17.2.4	Light Collection Modeled	\$0.00	0	0	\$0.00	1 day?	0 days	
154	17.3	Data Analysis Simulations	\$0.00	0	0	\$0.00	546 days?	0 days	
155	17.3.1	Beta Decay Backgrounds Only	\$0.00	0	0	\$0.00	90 days	0 days	
156	17.3.2	Complete Backgrounds Included	\$0.00	0	0	\$0.00	90 days	90 days	
157	17.3.3	Importance of Background Quantified	\$0.00	0	0	\$0.00	1 day?	0 days	
158	18	Project Development	\$135.40	0	0	\$424.50	1455 days?	0 days	
159	18.1	Conceptual Engineering	\$75.00	50	80	\$202.50	180 days	0 days	1
160	18.2	Pre-proposal Writing	\$0.00	0	0	\$0.00	360 days	180 days	10/2
161	18.3	Pre-proposal Submission to DOE	\$0.00	0	0	\$0.00	0 days	0 days	
162	18.4	DOE Guidance	\$0.00	0	0	\$0.00	250 days	0 days	
163	18.5	R&D Proposal Preparation	\$0.00	0	0	\$0.00	60 days	30 days	
164	18.6	R&D Proposal Submission to DOE	\$0.00	0	0	\$0.00	1 day?	0 days	
165	18.7	Proposal Preparation	\$12.50	50	80	\$33.75	90 days	30 days	
166	18.8	Proposal Submission to DOE	\$0.00	0	0	\$0.00	1 day?	0 days	
167	18.9	CDR Engineering	\$47.90	50	162	\$188.25	138 davs	69 days	
168	18.10	CDR Preparation	\$0.00	0	0	\$0.00	270 days	90 days	
169	18.11	Conceptual Design Review	\$0.00	0	0	\$0.00	1 dav?	0 days	
170	19	Management	\$28.21	0	0	\$92.39	102 davs	0 davs	
171	19.1	Project Manager Before Construction	\$28.21	25	162	\$92.39	102 days	26 days	
172	20	Expendables	\$81.00	0	0	\$124.65	1752 days	0 davs	
173	20.1		\$60.00	50	35	\$93.15	1752 dave	0 dave	10/2
174	20.2		\$21.00	50	0.0	\$31.50	487 dave	0 days	
	-0.2		ψ21.00	50	0	ψ01.00	-07 00/3	0 00395	

			0	2001	2002	2003	2004	2005 20
ID 1	WBS	Task Name	tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr tr
	1		'		-			
2	1.1	Specity Refrigerator	10/4	4/16			- - - -	
3	1.2	Procure Refrigerator	_	4/17	4/16			
4	1.3	Acceptance Test Refrigerator			10/14	12/12		
5	1.4	Ancillary Equipment			10/2	_10/31	-	
6	1.5	Working DR	_			1/11		
7	2	UCN Storage Time / Rate in Cell	_					
8	2.1	Measurement in LANSCE Beam	_					
9	211	Setup of Old Dilution Refrigerator	_	2/1 3999333999333 7	/30			
10	212	Sotup of Poom	_	40/45	40/20			
10	2.1.2	Setup at Beam	_	10/15	10/29			
11	2.1.3	Measurements		11/1	5 12/14			
12	2.1.4	Analysis of Data		12/	15 1/13			
13	2.2	Preliminary Storage Time and Rate Demo			1/13			
14	2.3	Meaurement Cell						
15	2.3.1	Design Cell			10/1	10/31		
16	2.3.2	Fabricate Cell	-		11/1	6 12/16		
17	2.3.3	Fabricate TPB	_		1/15 1/24	щ 		
18	2.3.4	Assemble Cell	-			1/1 1/10		
10	2.4	Measurements in NIST Beam	_		- - - -		:	
20	2.4.1	Setup at Ream	_		-	7/4	191	
20	2.7.1		_			/1 //		
21	2.4.2	Storage Lime Measurements	_		•	8/16	9/14	
22	2.4.3	Particle ID Measurement				8/16	9/14	
23	2.4.4	Analyze Data				9/30	10/29	
24	2.5	UCN Storage Demonstration			-		🌢 11/13	
25	2.6	Particle ID feasibility				3/1	2/28	
26	3	Hexapole 3He System	1 1					
27	3.1	Beam Injector	1			•		
28	3.1.1	Cryogenics System	-					
20	3111		10/2	11/1				
20	0.1.1.1		- 10/2	a 11/1				
30	3.1.1.2	Procurement Cryogenics	_ 11/					
31	3.1.1.3	Assemble Cryogenics	_	5/4				
32	3.1.2	Nozzle						
33	3.1.2.1	Design Nozzle		10/2	11/1			
34	3.1.2.2	Fabricate Nozzle		11/2	2 1/1			
35	3.1.2.3	Assemble Nozzle			1/26/3	0		
36	3.2	Filter / Analyzer	- I					
37	3.2.1	Design Magnets	10/2	11/1	•			
38	3.2.2	Procure Magnets	11/	2 5/3				
39	323	Assemble Magnets	_	8/2	1/28			
40	324		10/2	5/2 Real				
40	2.2.4		- 10/2					
41	3.2.3		_	2/10	5 4			
42	3.2.6	Assemble Vacuum System	_	11/1:	3 1/12			
43	3.3	3He Source Ready to Test				12/27		
44	3.4	3He Detector			-			
45	3.4.1	Procure Detector	10/2	11/30		⊨L		
46	3.4.2	Install Detector			12	/28 1/11		
47	3.5	Measure Source Intensity			1	1/12 5/11		
48	3.6	Measure Source Polarization	_					
49	3.6.1	Build RF Spin Flipper	-		10/2	10/31		
50	362	Measure Snin Dependent Transmission	_		10/2			
50 E1	2.0.2	240 Source Completed	_				0/9	
51	3.1		_	_				
52	4	Polarized 3He Transport System	_					
53	4.1	Design Transport		10/1	11/29			
54	4.2	Procure Transport Parts			1/29 _3/29			
55	4.3	Build Transport into Cryostat			4/296/2	9		
56	4.4	Measure 3He Transferred to Cryostat				11/:	30 _2/27	
57	4.5	Measure 3He Polarization in Cryostat			-	11/3	302/27	
58	4.6	3He Transport Understood	-		- - - -		1 🛉 🔽 5/2	27
	1			<u>:</u>		<u> </u>		<u> </u>
				Page 1				

			0	2001	2002	2003	2004	2005	20
ID	WBS	Task Name	tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr
59	5	Polarized 3He/4He Cryostat	_						
60	5.1	Purchase Cryostat	_	10/2	11/30				
61	5.2	Design Cryostat Insert			10/2	-11/30			
62	5.3	Fabricate Cryostat Insert				1/30 3/30			
63	5.4	Assemble Cryostat				10/15	11/13		
64	5.5	3He/4He Cryostat Completed					11/29		
65	6	SQUID System Prototype		· · ·					
66	6.1	Procure SQUIDs	10/2	12/30					
67	6.2	Assemble SQUID Electronics		2/14 5/14					
68	6.3	Install SQUID system Prototype		6/29	8/29				
69	7	Superconducting Shield Prototype							
70	7.1	Design Shield			10/1				
71	7.2	Procure Shield				3/2 _5/30			
72	7.3	Install Shield into DR				7/15	9/14		
73	7.4	Measure Shielding Factor, Trapped Fields				11/3	0 _2/27		
74	7.5	Magnetic Shielding Study Complete	1				5 /2	27	
75	8	SQUID Performance							
76	8.1	Measure SQUID Response to 3He	1			11/3	0 1/28		
77	8.2	SQUID Measurements vrs Concentration					3/29 5/27		
78	8.3	SQUID / 3He Systems Demonstrated						7/26	
79	9	High Voltage System Prototype	1 1						
80	9.1	Power Supply	10/2	10/31			•		
81	9.2	HV System	-						
82	9.2.1	Design HV	-		3/2	<u>8/2</u> 8			
83	9.2.2	Procure HV Parts	-						
84	9.2.2.1	Fabricate Outer Vacuum Vessel	-		11/2	27			
85	9.2.2.2	Fabrocate LN2 Shield	-		11/2	27/24			
86	9.2.2.3	Fabricate LHe Volume	-		11/2	27/24			
87	9.2.2.4	Procure HV Standoffs	-		11/2	3/26			
88	9.2.3	Assemble HV System	-			4/11 7/9			
89	9.2.4	Fabricate Alternate Electrodes	-		10/2	12/30			
90	9.3	HV System Ready for Tests	-				10/8		
91	9.4	Perform HV Tests	-			10/9	1/6		
92	9.5	HV System Demonstrated	-			10/0	4/5		
93	10	Kerr Effect Tests	-						
94	10.1	Procure Laser	-		10/2	12/30			
95	10.1	Procure Electronics and Optics	_		10/2	3/1 5/29			
96	10.2	R&D at 4 K	-		10/2	3/1 3/20			
97	10.0	Measurements at 50 kV/cm 4 K	-		10/2	10/0	11/7		
08	10.4	Measurements at 15 K	-			10/3	18 1/6		
00	10.5	Kerr Effect Demonstrated	-			12			
100	11	3He Denolarization in Cell	-				▼ 2/3		
100	11 1	Construct 4 K Cryostat	-					—	
101	11 1 1	Build Exchange 3He Deleriting Cell	_		40/0	12/20			
102	11.1.1		-		10/2	12/30			
103	11.1.2	Flocure Cryosidi	_		10/2	<u> </u>			
104	11.1.3		-		10/2	2/30			
105	11.1.4		_		10/2				
100	11.1.0	4 K Cryostat Assembly	-			2/14 5/14	100		
107	11.1.0	4 N Cryostat Assembled	_			6/	29		
108	11.2	Invieasure Depolarization at 4 K	_			6,30	- 8/2 /		
109	11.3	Depolarization Measured for Coatings 4 K	_			12/	212/24		
110	11.4	ivieasure Depolarization at 1 K	_				4/25	23	
111	11.5	Depolarization Measured for Coatings 1 K	_				10/22	12/20	
112	11.6	Depolarization Lifetime Understood	_		-			◆ 2/18	
113	12	Returbish 1 K Cryostat							
114	12.1	Procure Cryostat Instrumentation / Pumps	_			1/24/1			
115	12.2	Modify 1 K Cryostat			10/2	12/30			
116	12.3	Test 1 K Cryostat				5/1	/14		

			0	2001	2002	2003	2004	2005	20
117	WBS	Task Name	tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr tr tr	tr tr
11/	12.4	Ferromagnetic Shield Prototype	_						
110	13.1	Procure Shield Materials	_						
120	13.1	Procure Magnetic Monitoring Electronics	_			4/2 -6/.	20		
120	13.2	Measure Ferromagnetic Shields at 4 K	_			4/2 0/4E	11/12		
121	13.0	Measure Ferromagnetic Shields at 4 K	_			8/15 47	1/12		
122	13.4	Ferromagnetic Shield Understood	_			12		124	
123	14	3He Purification System	_				: ▼ °	~~~	
124	14.1	Refurbish HMI Purifier	-		3/2 20000 6/4				
120	14.2		_		JIZ 0/1	A/28	8		
120	14.3	Cycling Demonstrated	_			4/20 -0//	8/29		
128	14.4	Produce Two Cell Fills of Liltranure 4He	_			8/20	10/28		
120	15	3He Diffusion Coefficient Measurement	_			0/30	10/20		
130	15.1	Setup at FP 11a	10/2	10/31					
121	15.2	Diffusion with Neutron Tomography	11/2	11/20	- - - - -				
132	15.2	Data Analysis and Paner Writing	10/4						
122	15.4	Publication of Results			8/28				
134	16.7	Evaporative 3He Removal	_	•	5120				
135	16.1	Design Evaporation Chamber	_			10/1	11/29		
136	16.2	Eabricate Evaporation Chamber	-			10/1	1/20 2/29		
137	16.3	Design SQUID Sensor Geormetry	-				7/97	8/25	
138	16.4	Fabricate SQUID Modifications	-				0/25	10/24	
139	16.5	Assemble Evaporation Chamber and DR	-				5/25	24 1/22	
140	16.6	Measure 3He Removal Performance	-				11/2	2/22 4/22	
141	16.7	3He Removal Understood	-						5/21
142	17	Monte-Carlo Simulations	-					•	<i>"</i> - 1
143	17.1	Cold Neutron Simulations LANSCE / SNS	-						
144	17.1.1	Transport Through Beam Flements	-			1/1	20		
145	17.1.2	Beam State Selector	-			1/1	20		
146	17.1.3	Transport in the Cryostat	-			1/1	29		
147	17.1.4	Activation Neutrons	-			1/1	20		
148	17.1.5	Cold Neutrons Simulated	-				12/27		
149	17.2	UCN and Light Collection Simulations	-						
150	17.2.1	UCN Absorption on 3He	-			1/1	29		
151	17.2.2	Light Propogation in Cell Walls				1/1	: 29		
152	17.2.3	Light Propogation in Guides	-			1/1	: 29		
153	17.2.4	Light Collection Modeled	-				12/27		
154	17.3	Data Analysis Simulations	-						
155	17.3.1	Beta Decay Backgrounds Only	-		6/1	8/29	•		
156	17.3.2	Complete Backgrounds Included	-		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6/1	8/29		
157	17.3.3	Importance of Background Quantified	-				11/28		
158	18	Project Development							
159	18.1	Conceptual Engineering	-	10/1	-3/29			•	
160	18.2	Pre-proposal Writing	10/2		9/26				
161	18.3	Pre-proposal Submission to DOE			4/2				
162	18.4	DOE Guidance	-		4/2	12/7			
163	18.5	R&D Proposal Preparation			12	/8 _25			
164	18.6	R&D Proposal Submission to DOE	-			_3/8			
165	18.7	Proposal Preparation	-			3/9 6/6			
166	18.8	Proposal Submission to DOE	-				7/7		
167	18.9	CDR Engineering	-			•	3/2	/17	
168	18.10	CDR Preparation				10/1	6/2	26	
169	18.11	Conceptual Design Review	-					9/25	
170	19	Management							
171	19.1	Project Manager Before Construction					5/20	8/29	
172	20	Expendables	-			-			
173	20.1	LHe at LANL	10/2				:	7	/19
174	20.2	LHe away from LANL				6/2		9/30	
	I	· · · ·	<u> </u>		:			a	: